Real-Scale Integral Valorization of Waste Orange Peel via Hydrodynamic Cavitation
Waste orange peel represents a heavy burden for the orange juice industry, estimated in several million tons per year worldwide; nevertheless, this by-product is endowed with valuable bioactive compounds, such as pectin, polyphenols, and terpenes. The potential value of the waste orange peel has sti...
Gespeichert in:
Veröffentlicht in: | Processes 2019-09, Vol.7 (9), p.581 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Waste orange peel represents a heavy burden for the orange juice industry, estimated in several million tons per year worldwide; nevertheless, this by-product is endowed with valuable bioactive compounds, such as pectin, polyphenols, and terpenes. The potential value of the waste orange peel has stimulated the search for extraction processes, alternative or complementary to landfilling or to the integral energy conversion. This study introduces controlled hydrodynamic cavitation as a new route to the integral valorization of this by-product, based on simple equipment, speed, effectiveness and efficiency, scalability, and compliance with green extraction principles. Waste orange peel, in batches of several kg, was processed in more than 100 L of water, without any other raw materials, in a device comprising a Venturi-shaped cavitation reactor. The extractions of pectin (with a remarkably low degree of esterification), polyphenols (flavanones and hydroxycinnamic acid derivatives), and terpenes (mainly d-limonene) were effective and efficient (high yields within a few min of process time). The biomethane generation potential of the process residues was determined. The achieved results proved the viability of the proposed route to the integral valorization of waste orange peel, though wide margins exist for further improvements. |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr7090581 |