Advantages of Utilizing Population Balance Modeling of Crystallization Processes for Particle Size Distribution Prediction of an Active Pharmaceutical Ingredient

Active pharmaceutical ingredient (API) particle size distribution is important for both downstream processing operations and in vivo performance. Crystallization process parameters and reactor configuration are important in controlling API particle size distribution (PSD). Given the large number of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2019-06, Vol.7 (6), p.355
Hauptverfasser: Rosenbaum, Tamar, Tan, Li, Engstrom, Joshua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Active pharmaceutical ingredient (API) particle size distribution is important for both downstream processing operations and in vivo performance. Crystallization process parameters and reactor configuration are important in controlling API particle size distribution (PSD). Given the large number of parameters and the scale-dependence of many parameters, it can be difficult to design a scalable crystallization process that delivers a target PSD. Population balance modeling is a useful tool for understanding crystallization kinetics, which are primarily scale-independent, predicting PSD, and studying the impact of process parameters on PSD. Although population balance modeling (PBM) does have certain limitations, such as scale dependency of secondary nucleation, and is currently limited in commercial software packages to one particle dimension, which has difficulty in predicting PSD for high aspect ratio morphologies, there is still much to be gained from applying PBM in API crystallization processes.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr7060355