Andrásfai and Vega graphs in Ramsey–Turán theory
Given positive integers n ⩾ s, we let ex ( n , s ) denote the maximum number of edges in a triangle‐free graph G on n vertices with α ( G ) ⩽ s. In the early 1960s, Andrásfai conjectured that for n ∕ 3 < s < n ∕ 2 the function ex ( n , s ) is piecewise quadratic with critical values at s ∕ n =...
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2021-09, Vol.98 (1), p.57-80 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given positive integers
n
⩾
s, we let
ex
(
n
,
s
) denote the maximum number of edges in a triangle‐free graph
G on
n vertices with
α
(
G
)
⩽
s. In the early 1960s, Andrásfai conjectured that for
n
∕
3
<
s
<
n
∕
2 the function
ex
(
n
,
s
) is piecewise quadratic with critical values at
s
∕
n
=
k
∕
(
3
k
−
1
) for
k
∈
N. We confirm that this is indeed the case whenever
s
∕
n is slightly larger than a critical value, thus determining
ex
(
n
,
s
) for all
n and
s such that
s
∕
n
∈
[
k
∕
(
3
k
−
1
)
,
k
∕
(
3
k
−
1
)
+
γ
k
], where
γ
k
=
Θ
(
k
−
6
). |
---|---|
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.22682 |