Role of Stochastic Petri Net (SPN) in Process Discovery for Modelling and Analysis

For exploitation and extraction of an event’s data that has vital information which is related to the process from the event log, process mining is used. There are three main basic types of process mining as explained in relation to input and output. These are process discovery, conformance checking...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2021-06, Vol.2021, p.1-7
Hauptverfasser: Shahzadi, Shabnam, Fang, Xianwen, Alilah, David Anekeya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For exploitation and extraction of an event’s data that has vital information which is related to the process from the event log, process mining is used. There are three main basic types of process mining as explained in relation to input and output. These are process discovery, conformance checking, and enhancement. Process discovery is one of the most challenging process mining activities based on the event log. Business processes or system performance plays a vital role in modelling, analysis, and prediction. Recently, a memoryless model such as exponential distribution of the stochastic Petri net SPN has gained much attention in research and industry. This paper uses time perspective for modelling and analysis and uses stochastic Petri net to check the performance, evolution, stability, and reliability of the model. To assess the effect of time delay in firing the transition, stochastic reward net SRN model is used. The model can also be used in checking the reliability of the model, whereas the generalized stochastic Petri net GSPN is used for evaluation and checking the performance of the model. SPN is used to analyze the probability of state transition and the stability from one state to another. However, in process mining, logs are used by linking log sequence with the state and, by this, modelling can be done, and its relation with stability of the model can be established.
ISSN:1024-123X
1563-5147
DOI:10.1155/2021/8699164