Stochastic motion in an expanding noncommutative fluid

A model for an expanding noncommutative acoustic fluid analogous to a Friedmann-Robertson-Walker geometry is derived. For this purpose, a noncommutative Abelian Higgs model is considered in a (3+1)-dimensional spacetime. In this scenario, we analyze the motion of test particles in this fluid. The st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2021-06, Vol.103 (12), p.1, Article 125023
Hauptverfasser: Anacleto, M. A., Bessa, C. H. G., Brito, F. A., Ferreira, E. J. B., Passos, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 1
container_title Physical review. D
container_volume 103
creator Anacleto, M. A.
Bessa, C. H. G.
Brito, F. A.
Ferreira, E. J. B.
Passos, E.
description A model for an expanding noncommutative acoustic fluid analogous to a Friedmann-Robertson-Walker geometry is derived. For this purpose, a noncommutative Abelian Higgs model is considered in a (3+1)-dimensional spacetime. In this scenario, we analyze the motion of test particles in this fluid. The study considers a scalar test particle coupled to a quantized fluctuating massless scalar field. For all cases studied, we find corrections due to the noncommutativity in the mean squared velocity of the particles. The nonzero velocity dispersion for particles that are free to move on geodesics disagrees with the null result found previously in the literature for expanding commutative fluid.
doi_str_mv 10.1103/PhysRevD.103.125023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2549947795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2549947795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-526f936f2f3d9b5af985b4c92e6ae4e038743f4b54678416ded3a05cf87a17e73</originalsourceid><addsrcrecordid>eNo9kEtLAzEAhIMoWGp_gZcFz7vmnc1R6hMKio9zyGYTm9JN1k222H_vlqqnmYFhBj4ALhGsEILk-mW9T692d1tNoUKYQUxOwAxTAUsIsTz99wieg0VKGzhZDqVAaAb4W45mrVP2puhi9jEUPhQ6FPa716H14bMIMZjYdWPW2e9s4bajby_AmdPbZBe_Ogcf93fvy8dy9fzwtLxZlYZgnEuGuZOEO-xIKxumnaxZQ43ElmtLLSS1oMTRhlEuaop4a1uiITOuFhoJK8gcXB13-yF-jTZltYnjEKZLhRmVkgoh2dQix5YZYkqDdaoffKeHvUJQHRipP0bqEI6MyA-1SFrr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549947795</pqid></control><display><type>article</type><title>Stochastic motion in an expanding noncommutative fluid</title><source>American Physical Society Journals</source><creator>Anacleto, M. A. ; Bessa, C. H. G. ; Brito, F. A. ; Ferreira, E. J. B. ; Passos, E.</creator><creatorcontrib>Anacleto, M. A. ; Bessa, C. H. G. ; Brito, F. A. ; Ferreira, E. J. B. ; Passos, E.</creatorcontrib><description>A model for an expanding noncommutative acoustic fluid analogous to a Friedmann-Robertson-Walker geometry is derived. For this purpose, a noncommutative Abelian Higgs model is considered in a (3+1)-dimensional spacetime. In this scenario, we analyze the motion of test particles in this fluid. The study considers a scalar test particle coupled to a quantized fluctuating massless scalar field. For all cases studied, we find corrections due to the noncommutativity in the mean squared velocity of the particles. The nonzero velocity dispersion for particles that are free to move on geodesics disagrees with the null result found previously in the literature for expanding commutative fluid.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.103.125023</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Geodesy ; Scalars</subject><ispartof>Physical review. D, 2021-06, Vol.103 (12), p.1, Article 125023</ispartof><rights>Copyright American Physical Society Jun 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-526f936f2f3d9b5af985b4c92e6ae4e038743f4b54678416ded3a05cf87a17e73</citedby><cites>FETCH-LOGICAL-c322t-526f936f2f3d9b5af985b4c92e6ae4e038743f4b54678416ded3a05cf87a17e73</cites><orcidid>0000-0001-9465-6868 ; 0000-0001-6082-8350 ; 0000-0003-1718-6385 ; 0000-0003-4625-7322 ; 0000-0001-5572-8099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids></links><search><creatorcontrib>Anacleto, M. A.</creatorcontrib><creatorcontrib>Bessa, C. H. G.</creatorcontrib><creatorcontrib>Brito, F. A.</creatorcontrib><creatorcontrib>Ferreira, E. J. B.</creatorcontrib><creatorcontrib>Passos, E.</creatorcontrib><title>Stochastic motion in an expanding noncommutative fluid</title><title>Physical review. D</title><description>A model for an expanding noncommutative acoustic fluid analogous to a Friedmann-Robertson-Walker geometry is derived. For this purpose, a noncommutative Abelian Higgs model is considered in a (3+1)-dimensional spacetime. In this scenario, we analyze the motion of test particles in this fluid. The study considers a scalar test particle coupled to a quantized fluctuating massless scalar field. For all cases studied, we find corrections due to the noncommutativity in the mean squared velocity of the particles. The nonzero velocity dispersion for particles that are free to move on geodesics disagrees with the null result found previously in the literature for expanding commutative fluid.</description><subject>Geodesy</subject><subject>Scalars</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEAhIMoWGp_gZcFz7vmnc1R6hMKio9zyGYTm9JN1k222H_vlqqnmYFhBj4ALhGsEILk-mW9T692d1tNoUKYQUxOwAxTAUsIsTz99wieg0VKGzhZDqVAaAb4W45mrVP2puhi9jEUPhQ6FPa716H14bMIMZjYdWPW2e9s4bajby_AmdPbZBe_Ogcf93fvy8dy9fzwtLxZlYZgnEuGuZOEO-xIKxumnaxZQ43ElmtLLSS1oMTRhlEuaop4a1uiITOuFhoJK8gcXB13-yF-jTZltYnjEKZLhRmVkgoh2dQix5YZYkqDdaoffKeHvUJQHRipP0bqEI6MyA-1SFrr</recordid><startdate>20210615</startdate><enddate>20210615</enddate><creator>Anacleto, M. A.</creator><creator>Bessa, C. H. G.</creator><creator>Brito, F. A.</creator><creator>Ferreira, E. J. B.</creator><creator>Passos, E.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9465-6868</orcidid><orcidid>https://orcid.org/0000-0001-6082-8350</orcidid><orcidid>https://orcid.org/0000-0003-1718-6385</orcidid><orcidid>https://orcid.org/0000-0003-4625-7322</orcidid><orcidid>https://orcid.org/0000-0001-5572-8099</orcidid></search><sort><creationdate>20210615</creationdate><title>Stochastic motion in an expanding noncommutative fluid</title><author>Anacleto, M. A. ; Bessa, C. H. G. ; Brito, F. A. ; Ferreira, E. J. B. ; Passos, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-526f936f2f3d9b5af985b4c92e6ae4e038743f4b54678416ded3a05cf87a17e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Geodesy</topic><topic>Scalars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anacleto, M. A.</creatorcontrib><creatorcontrib>Bessa, C. H. G.</creatorcontrib><creatorcontrib>Brito, F. A.</creatorcontrib><creatorcontrib>Ferreira, E. J. B.</creatorcontrib><creatorcontrib>Passos, E.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anacleto, M. A.</au><au>Bessa, C. H. G.</au><au>Brito, F. A.</au><au>Ferreira, E. J. B.</au><au>Passos, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic motion in an expanding noncommutative fluid</atitle><jtitle>Physical review. D</jtitle><date>2021-06-15</date><risdate>2021</risdate><volume>103</volume><issue>12</issue><spage>1</spage><pages>1-</pages><artnum>125023</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>A model for an expanding noncommutative acoustic fluid analogous to a Friedmann-Robertson-Walker geometry is derived. For this purpose, a noncommutative Abelian Higgs model is considered in a (3+1)-dimensional spacetime. In this scenario, we analyze the motion of test particles in this fluid. The study considers a scalar test particle coupled to a quantized fluctuating massless scalar field. For all cases studied, we find corrections due to the noncommutativity in the mean squared velocity of the particles. The nonzero velocity dispersion for particles that are free to move on geodesics disagrees with the null result found previously in the literature for expanding commutative fluid.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.103.125023</doi><orcidid>https://orcid.org/0000-0001-9465-6868</orcidid><orcidid>https://orcid.org/0000-0001-6082-8350</orcidid><orcidid>https://orcid.org/0000-0003-1718-6385</orcidid><orcidid>https://orcid.org/0000-0003-4625-7322</orcidid><orcidid>https://orcid.org/0000-0001-5572-8099</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2021-06, Vol.103 (12), p.1, Article 125023
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2549947795
source American Physical Society Journals
subjects Geodesy
Scalars
title Stochastic motion in an expanding noncommutative fluid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A04%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20motion%20in%20an%20expanding%20noncommutative%20fluid&rft.jtitle=Physical%20review.%20D&rft.au=Anacleto,%20M.%E2%80%89A.&rft.date=2021-06-15&rft.volume=103&rft.issue=12&rft.spage=1&rft.pages=1-&rft.artnum=125023&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.103.125023&rft_dat=%3Cproquest_cross%3E2549947795%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549947795&rft_id=info:pmid/&rfr_iscdi=true