Stochastic motion in an expanding noncommutative fluid
A model for an expanding noncommutative acoustic fluid analogous to a Friedmann-Robertson-Walker geometry is derived. For this purpose, a noncommutative Abelian Higgs model is considered in a (3+1)-dimensional spacetime. In this scenario, we analyze the motion of test particles in this fluid. The st...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2021-06, Vol.103 (12), p.1, Article 125023 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 1 |
container_title | Physical review. D |
container_volume | 103 |
creator | Anacleto, M. A. Bessa, C. H. G. Brito, F. A. Ferreira, E. J. B. Passos, E. |
description | A model for an expanding noncommutative acoustic fluid analogous to a Friedmann-Robertson-Walker geometry is derived. For this purpose, a noncommutative Abelian Higgs model is considered in a (3+1)-dimensional spacetime. In this scenario, we analyze the motion of test particles in this fluid. The study considers a scalar test particle coupled to a quantized fluctuating massless scalar field. For all cases studied, we find corrections due to the noncommutativity in the mean squared velocity of the particles. The nonzero velocity dispersion for particles that are free to move on geodesics disagrees with the null result found previously in the literature for expanding commutative fluid. |
doi_str_mv | 10.1103/PhysRevD.103.125023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2549947795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2549947795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-526f936f2f3d9b5af985b4c92e6ae4e038743f4b54678416ded3a05cf87a17e73</originalsourceid><addsrcrecordid>eNo9kEtLAzEAhIMoWGp_gZcFz7vmnc1R6hMKio9zyGYTm9JN1k222H_vlqqnmYFhBj4ALhGsEILk-mW9T692d1tNoUKYQUxOwAxTAUsIsTz99wieg0VKGzhZDqVAaAb4W45mrVP2puhi9jEUPhQ6FPa716H14bMIMZjYdWPW2e9s4bajby_AmdPbZBe_Ogcf93fvy8dy9fzwtLxZlYZgnEuGuZOEO-xIKxumnaxZQ43ElmtLLSS1oMTRhlEuaop4a1uiITOuFhoJK8gcXB13-yF-jTZltYnjEKZLhRmVkgoh2dQix5YZYkqDdaoffKeHvUJQHRipP0bqEI6MyA-1SFrr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549947795</pqid></control><display><type>article</type><title>Stochastic motion in an expanding noncommutative fluid</title><source>American Physical Society Journals</source><creator>Anacleto, M. A. ; Bessa, C. H. G. ; Brito, F. A. ; Ferreira, E. J. B. ; Passos, E.</creator><creatorcontrib>Anacleto, M. A. ; Bessa, C. H. G. ; Brito, F. A. ; Ferreira, E. J. B. ; Passos, E.</creatorcontrib><description>A model for an expanding noncommutative acoustic fluid analogous to a Friedmann-Robertson-Walker geometry is derived. For this purpose, a noncommutative Abelian Higgs model is considered in a (3+1)-dimensional spacetime. In this scenario, we analyze the motion of test particles in this fluid. The study considers a scalar test particle coupled to a quantized fluctuating massless scalar field. For all cases studied, we find corrections due to the noncommutativity in the mean squared velocity of the particles. The nonzero velocity dispersion for particles that are free to move on geodesics disagrees with the null result found previously in the literature for expanding commutative fluid.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.103.125023</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Geodesy ; Scalars</subject><ispartof>Physical review. D, 2021-06, Vol.103 (12), p.1, Article 125023</ispartof><rights>Copyright American Physical Society Jun 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-526f936f2f3d9b5af985b4c92e6ae4e038743f4b54678416ded3a05cf87a17e73</citedby><cites>FETCH-LOGICAL-c322t-526f936f2f3d9b5af985b4c92e6ae4e038743f4b54678416ded3a05cf87a17e73</cites><orcidid>0000-0001-9465-6868 ; 0000-0001-6082-8350 ; 0000-0003-1718-6385 ; 0000-0003-4625-7322 ; 0000-0001-5572-8099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids></links><search><creatorcontrib>Anacleto, M. A.</creatorcontrib><creatorcontrib>Bessa, C. H. G.</creatorcontrib><creatorcontrib>Brito, F. A.</creatorcontrib><creatorcontrib>Ferreira, E. J. B.</creatorcontrib><creatorcontrib>Passos, E.</creatorcontrib><title>Stochastic motion in an expanding noncommutative fluid</title><title>Physical review. D</title><description>A model for an expanding noncommutative acoustic fluid analogous to a Friedmann-Robertson-Walker geometry is derived. For this purpose, a noncommutative Abelian Higgs model is considered in a (3+1)-dimensional spacetime. In this scenario, we analyze the motion of test particles in this fluid. The study considers a scalar test particle coupled to a quantized fluctuating massless scalar field. For all cases studied, we find corrections due to the noncommutativity in the mean squared velocity of the particles. The nonzero velocity dispersion for particles that are free to move on geodesics disagrees with the null result found previously in the literature for expanding commutative fluid.</description><subject>Geodesy</subject><subject>Scalars</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEAhIMoWGp_gZcFz7vmnc1R6hMKio9zyGYTm9JN1k222H_vlqqnmYFhBj4ALhGsEILk-mW9T692d1tNoUKYQUxOwAxTAUsIsTz99wieg0VKGzhZDqVAaAb4W45mrVP2puhi9jEUPhQ6FPa716H14bMIMZjYdWPW2e9s4bajby_AmdPbZBe_Ogcf93fvy8dy9fzwtLxZlYZgnEuGuZOEO-xIKxumnaxZQ43ElmtLLSS1oMTRhlEuaop4a1uiITOuFhoJK8gcXB13-yF-jTZltYnjEKZLhRmVkgoh2dQix5YZYkqDdaoffKeHvUJQHRipP0bqEI6MyA-1SFrr</recordid><startdate>20210615</startdate><enddate>20210615</enddate><creator>Anacleto, M. A.</creator><creator>Bessa, C. H. G.</creator><creator>Brito, F. A.</creator><creator>Ferreira, E. J. B.</creator><creator>Passos, E.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9465-6868</orcidid><orcidid>https://orcid.org/0000-0001-6082-8350</orcidid><orcidid>https://orcid.org/0000-0003-1718-6385</orcidid><orcidid>https://orcid.org/0000-0003-4625-7322</orcidid><orcidid>https://orcid.org/0000-0001-5572-8099</orcidid></search><sort><creationdate>20210615</creationdate><title>Stochastic motion in an expanding noncommutative fluid</title><author>Anacleto, M. A. ; Bessa, C. H. G. ; Brito, F. A. ; Ferreira, E. J. B. ; Passos, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-526f936f2f3d9b5af985b4c92e6ae4e038743f4b54678416ded3a05cf87a17e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Geodesy</topic><topic>Scalars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anacleto, M. A.</creatorcontrib><creatorcontrib>Bessa, C. H. G.</creatorcontrib><creatorcontrib>Brito, F. A.</creatorcontrib><creatorcontrib>Ferreira, E. J. B.</creatorcontrib><creatorcontrib>Passos, E.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anacleto, M. A.</au><au>Bessa, C. H. G.</au><au>Brito, F. A.</au><au>Ferreira, E. J. B.</au><au>Passos, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic motion in an expanding noncommutative fluid</atitle><jtitle>Physical review. D</jtitle><date>2021-06-15</date><risdate>2021</risdate><volume>103</volume><issue>12</issue><spage>1</spage><pages>1-</pages><artnum>125023</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>A model for an expanding noncommutative acoustic fluid analogous to a Friedmann-Robertson-Walker geometry is derived. For this purpose, a noncommutative Abelian Higgs model is considered in a (3+1)-dimensional spacetime. In this scenario, we analyze the motion of test particles in this fluid. The study considers a scalar test particle coupled to a quantized fluctuating massless scalar field. For all cases studied, we find corrections due to the noncommutativity in the mean squared velocity of the particles. The nonzero velocity dispersion for particles that are free to move on geodesics disagrees with the null result found previously in the literature for expanding commutative fluid.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.103.125023</doi><orcidid>https://orcid.org/0000-0001-9465-6868</orcidid><orcidid>https://orcid.org/0000-0001-6082-8350</orcidid><orcidid>https://orcid.org/0000-0003-1718-6385</orcidid><orcidid>https://orcid.org/0000-0003-4625-7322</orcidid><orcidid>https://orcid.org/0000-0001-5572-8099</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2021-06, Vol.103 (12), p.1, Article 125023 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_proquest_journals_2549947795 |
source | American Physical Society Journals |
subjects | Geodesy Scalars |
title | Stochastic motion in an expanding noncommutative fluid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A04%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20motion%20in%20an%20expanding%20noncommutative%20fluid&rft.jtitle=Physical%20review.%20D&rft.au=Anacleto,%20M.%E2%80%89A.&rft.date=2021-06-15&rft.volume=103&rft.issue=12&rft.spage=1&rft.pages=1-&rft.artnum=125023&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.103.125023&rft_dat=%3Cproquest_cross%3E2549947795%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549947795&rft_id=info:pmid/&rfr_iscdi=true |