Stochastic motion in an expanding noncommutative fluid
A model for an expanding noncommutative acoustic fluid analogous to a Friedmann-Robertson-Walker geometry is derived. For this purpose, a noncommutative Abelian Higgs model is considered in a (3+1)-dimensional spacetime. In this scenario, we analyze the motion of test particles in this fluid. The st...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2021-06, Vol.103 (12), p.1, Article 125023 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A model for an expanding noncommutative acoustic fluid analogous to a Friedmann-Robertson-Walker geometry is derived. For this purpose, a noncommutative Abelian Higgs model is considered in a (3+1)-dimensional spacetime. In this scenario, we analyze the motion of test particles in this fluid. The study considers a scalar test particle coupled to a quantized fluctuating massless scalar field. For all cases studied, we find corrections due to the noncommutativity in the mean squared velocity of the particles. The nonzero velocity dispersion for particles that are free to move on geodesics disagrees with the null result found previously in the literature for expanding commutative fluid. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.103.125023 |