Structure-Aware Motion Deblurring Using Multi-Adversarial Optimized CycleGAN

Recently, Convolutional Neural Networks (CNNs) have achieved great improvements in blind image motion deblurring. However, most existing image deblurring methods require a large amount of paired training data and fail to maintain satisfactory structural information, which greatly limits their applic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2021-01, Vol.30, p.1-1
Hauptverfasser: Wen, Yang, Chen, Jie, Sheng, Bin, Chen, Zhihua, Li, Ping, Tan, Ping, Lee, Tong-Yee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, Convolutional Neural Networks (CNNs) have achieved great improvements in blind image motion deblurring. However, most existing image deblurring methods require a large amount of paired training data and fail to maintain satisfactory structural information, which greatly limits their application scope. In this paper, we present an unsupervised image deblurring method based on a multi-adversarial optimized cycle-consistent generative adversarial network (CycleGAN). Although original CycleGAN can handle unpaired training data well, the generated high-resolution images are probable to lose content and structure information. To solve this problem, we utilize a multi-adversarial mechanism based on CycleGAN for blind motion deblurring to generate high-resolution images iteratively. In this multi-adversarial manner, the hidden layers of the generator are gradually supervised, and the implicit refinement is carried out to generate high-resolution images continuously. Meanwhile, we also introduce the structure-aware mechanism to enhance the structure and detail retention ability of the multi-adversarial network for deblurring by taking the edge map as guidance information and adding multi-scale edge constraint functions. Our approach not only avoids the strict need for paired training data and the errors caused by blur kernel estimation, but also maintains the structural information better with multi-adversarial learning and structure-aware mechanism. Comprehensive experiments on several benchmarks have shown that our approach prevails the state-of-the-art methods for blind image motion deblurring.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2021.3092814