EIHDP: Edge-Intelligent Hierarchical Dynamic Pricing Based on Cloud-Edge-Client Collaboration for IoT Systems
Nowadays, IoT systems can better satisfy the service requirements of users with effectively utilizing edge computing resources. Designing an appropriate pricing scheme is critical for users to obtain the optimal computing resources at a reasonable price and for service providers to maximize profits....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computers 2021-08, Vol.70 (8), p.1285-1298 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nowadays, IoT systems can better satisfy the service requirements of users with effectively utilizing edge computing resources. Designing an appropriate pricing scheme is critical for users to obtain the optimal computing resources at a reasonable price and for service providers to maximize profits. This problem is complicated with incomplete information. The state-of-the-art solutions focus on the pricing game between a single service provider and users, which ignoring the competition among multiple edge service providers. To address this challenge, we design an edge-intelligent hierarchical dynamic pricing mechanism based on cloud-edge-client collaboration. We introduce an improved double-layer Stackelberg game model to describe the cloud-edge-client collaboration. Technically, we propose a novel pricing prediction algorithm based on double-label Radius K-nearest Neighbors, thereby reducing the number of invalid games to accelerate the game convergence. The experimental results show that our proposed mechanism effectively improves the quality of service for users and realizes the maximum benefit equilibrium for service providers, compared with the traditional pricing scheme. Our proposed mechanism is highly suitable for the IoT applications (e.g., intelligent agriculture or Internet of Vehicles), where there are multiple competing edge service providers for resource allocation. |
---|---|
ISSN: | 0018-9340 1557-9956 |
DOI: | 10.1109/TC.2021.3060484 |