Dynamic Resource Configuration for Low-Power IoT Networks: A Multi-Objective Reinforcement Learning Method
Considering grant-free transmissions in low-power IoT networks with unknown time-frequency distribution of interference, we address the problem of Dynamic Resource Configuration (DRC), which amounts to a Markov decision process. Unfortunately, off-the-shelf methods based on single-objective reinforc...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2021-07, Vol.25 (7), p.2285-2289 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Considering grant-free transmissions in low-power IoT networks with unknown time-frequency distribution of interference, we address the problem of Dynamic Resource Configuration (DRC), which amounts to a Markov decision process. Unfortunately, off-the-shelf methods based on single-objective reinforcement learning cannot guarantee energy-efficient transmission, especially when all frequency-domain channels in a time interval are interfered. Therefore, we propose a novel DRC scheme where configuration policies are optimized with a Multi-Objective Reinforcement Learning (MORL) framework. Numerical results show that the average decision error rate achieved by the MORL-based DRC can be even less than 12% of that yielded by the conventional R-learning-based approach. |
---|---|
ISSN: | 1089-7798 1558-2558 |
DOI: | 10.1109/LCOMM.2021.3074756 |