ON EXTENDED WEIGHT MONOIDS OF SPHERICAL HOMOGENEOUS SPACES

Given a connected reductive complex algebraic group G and a spherical subgroup H ⊂ G , the extended weight monoid Λ ̂ G + G / H encodes the G -module structures on spaces of global sections of all G -linearized line bundles on G / H . Assuming that G is semisimple and simply connected and H is speci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transformation groups 2021-06, Vol.26 (2), p.403-431
1. Verfasser: AVDEEV, ROMAN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a connected reductive complex algebraic group G and a spherical subgroup H ⊂ G , the extended weight monoid Λ ̂ G + G / H encodes the G -module structures on spaces of global sections of all G -linearized line bundles on G / H . Assuming that G is semisimple and simply connected and H is specified by a regular embedding in a parabolic subgroup P ⊂ G , in this paper we obtain a description of Λ ̂ G + G / H via the set of simple spherical roots of G / H together with certain combinatorial data explicitly computed from the pair ( P ; H ). As an application, we deduce a new proof of a result of Avdeev and Gorfinkel describing Λ ̂ G + G / H in the case where H is strongly solvable.
ISSN:1083-4362
1531-586X
DOI:10.1007/s00031-021-09642-3