ON EXTENDED WEIGHT MONOIDS OF SPHERICAL HOMOGENEOUS SPACES
Given a connected reductive complex algebraic group G and a spherical subgroup H ⊂ G , the extended weight monoid Λ ̂ G + G / H encodes the G -module structures on spaces of global sections of all G -linearized line bundles on G / H . Assuming that G is semisimple and simply connected and H is speci...
Gespeichert in:
Veröffentlicht in: | Transformation groups 2021-06, Vol.26 (2), p.403-431 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a connected reductive complex algebraic group
G
and a spherical subgroup
H
⊂
G
, the extended weight monoid
Λ
̂
G
+
G
/
H
encodes the
G
-module structures on spaces of global sections of all
G
-linearized line bundles on
G
/
H
. Assuming that
G
is semisimple and simply connected and
H
is specified by a regular embedding in a parabolic subgroup
P
⊂
G
, in this paper we obtain a description of
Λ
̂
G
+
G
/
H
via the set of simple spherical roots of
G
/
H
together with certain combinatorial data explicitly computed from the pair (
P
;
H
). As an application, we deduce a new proof of a result of Avdeev and Gorfinkel describing
Λ
̂
G
+
G
/
H
in the case where
H
is strongly solvable. |
---|---|
ISSN: | 1083-4362 1531-586X |
DOI: | 10.1007/s00031-021-09642-3 |