Optimizing prediction of response to antidepressant medications using machine learning and integrated genetic, clinical, and demographic data

Major depressive disorder (MDD) is complex and multifactorial, posing a major challenge of tailoring the optimal medication for each patient. Current practice for MDD treatment mainly relies on trial and error, with an estimated 42–53% response rates for antidepressant use. Here, we sought to genera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Translational psychiatry 2021-07, Vol.11 (1), p.381-381, Article 381
Hauptverfasser: Taliaz, Dekel, Spinrad, Amit, Barzilay, Ran, Barnett-Itzhaki, Zohar, Averbuch, Dana, Teltsh, Omri, Schurr, Roy, Darki-Morag, Sne, Lerer, Bernard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Major depressive disorder (MDD) is complex and multifactorial, posing a major challenge of tailoring the optimal medication for each patient. Current practice for MDD treatment mainly relies on trial and error, with an estimated 42–53% response rates for antidepressant use. Here, we sought to generate an accurate predictor of response to a panel of antidepressants and optimize treatment selection using a data-driven approach analyzing combinations of genetic, clinical, and demographic factors. We analyzed the response patterns of patients to three antidepressant medications in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study, and employed state-of-the-art machine learning (ML) tools to generate a predictive algorithm. To validate our results, we assessed the algorithm’s capacity to predict individualized antidepressant responses on a separate set of 530 patients in STAR*D, consisting of 271 patients in a validation set and 259 patients in the final test set. This assessment yielded an average balanced accuracy rate of 72.3% (SD 8.1) and 70.1% (SD 6.8) across the different medications in the validation and test set, respectively ( p  
ISSN:2158-3188
2158-3188
DOI:10.1038/s41398-021-01488-3