An investigation on deep learning and wavelet transform to nowcast wind power and wind power ramp: A case study in Brazil and Uruguay
Large variations in wind energy production over a period of minutes to hours is a challenge for electricity balancing authorities. The use of reliable tools for the prediction of wind power and wind power ramp events is essential for the operator of the electrical system. The main objective of this...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2021-09, Vol.230, p.120842, Article 120842 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Large variations in wind energy production over a period of minutes to hours is a challenge for electricity balancing authorities. The use of reliable tools for the prediction of wind power and wind power ramp events is essential for the operator of the electrical system. The main objective of this work is to analyze the wind power and wind power ramp forecasting at Brazil and Uruguay. To achieve this goal the wavelet decomposition applying 48 different mother wavelet functions and deep learning techniques are used. The recurrent neural network was trained to perform the forecasting of 1 h ahead, and then, using it, the trained network was applied to recursively infer the forecasting for the next hours of the wind speed. After this computational procedure, the wind power and the wind power ramp were predicted. The results showed good accuracy and can be used as a tool to help national grid operators for the energy supply. The wavelet discrete Meyer family (dmey) demonstrates greater precision in the decomposition of the wind speed signals. Therefore, it is proven that the wavelet dmey is the most accurate in the decomposition of temporal wind signals, whether using signals from tropical or subtropical regions.
•Nowcasting wind prediction in tropical and subtropical sites using AI and Wavelet.•An ANN approach for the estimation of wind power ramp using deep learning.•Modeling of wind using atmospheric factors in tropical and subtropical sites.•Wind power and wind power ramp forecasting applying 48 mother Wavelet functions. |
---|---|
ISSN: | 0360-5442 1873-6785 |
DOI: | 10.1016/j.energy.2021.120842 |