Behavioral Model of Silicon Photo-Multipliers Suitable for Transistor-Level Circuit Simulation
Silicon Photomultipliers (SiPMs) are photo-electronic devices able to detect single photons and permit the measurement of weak optical signals. Single-photon detection is accomplished through high-performance read-out front-end electronics whose design needs accurate modeling of the photomultiplier...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2021-07, Vol.10 (13), p.1551 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Silicon Photomultipliers (SiPMs) are photo-electronic devices able to detect single photons and permit the measurement of weak optical signals. Single-photon detection is accomplished through high-performance read-out front-end electronics whose design needs accurate modeling of the photomultiplier device. In the past, a useful model was developed, but it is limited to the device electrical characteristic and its parameter extraction procedure requires several measurement steps. A new silicon photomultiplier model is proposed in this paper. It exploits the Verilog-a behavioral language and is appropriate to transistor-level circuit simulations. The photon detection of a single cell is modeled using the traditional electrical model. A statistical model is included to describe the silicon photomultiplier noise caused by dark-count or after-pulsing effects. The paper also includes a procedure for the extraction of the model parameters through measurements. The Verilog-a model and the extraction procedure are validated by comparing simulations to experimental results. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics10131551 |