Missed carbon emissions from forests: comparing countries' estimates submitted to UNFCCC to biophysical estimates

Reducing forest loss has the potential to reduce global carbon emissions, but paying countries to do so will only work if activities are targeting areas with rapid deforestation or high threat. As of December 2017, 25 countries reported their benchmark greenhouse gas emissions from forests ('re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research letters 2019-02, Vol.14 (2), p.24015
Hauptverfasser: Nomura, Keiko, Mitchard, Edward TA, Bowers, Samuel J, Patenaude, Genevieve
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reducing forest loss has the potential to reduce global carbon emissions, but paying countries to do so will only work if activities are targeting areas with rapid deforestation or high threat. As of December 2017, 25 countries reported their benchmark greenhouse gas emissions from forests ('reference levels') under the United Nations Framework Convention on Climate Change, with the aim of receiving payments if they end up releasing less or removing more. There remains however a question as to whether the eventual emission trajectories compared to these reference levels represent real emission reductions, as the benchmarks rely on a variety of different methods and limited datasets. To examine whether the forest areas historically associated with significant emissions are targeted in the reference levels, we compared the forest area estimates submitted by seven countries in Asia and the Pacific (Cambodia, Indonesia, Malaysia, Nepal, Papua New Guinea, Sri Lanka, and Vietnam) with forest area estimates using the Global Forest Change v1.4 (GFC) dataset from 2000-2016, processed to closely match national forest definitions. GFC provides standardised tree cover change data based on biophysical characteristics using an extensive collection of satellite images. We found consistent differences, with most countries reporting considerably less forest loss than the GFC-based analysis. These differences are due to the countries' selection of activities to report, as well as their choice of forest types and land use, defining the forest areas to be monitored. Our study highlights an urgent need to address the gap between the forests monitored by countries and those sources of emissions. The current approaches, even successfully implemented, may not lead to emission reductions, thereby challenging the effectiveness of carbon payments.
ISSN:1748-9326
1748-9326
DOI:10.1088/1748-9326/aafc6b