Efficient approximation of the metric CVRP in spaces of fixed doubling dimension
The capacitated vehicle routing problem (CVRP) is the well-known combinatorial optimization problem having numerous practically important applications. CVRP is strongly NP-hard (even on the Euclidean plane), hard to approximate in general case and APX-complete for an arbitrary metric. Meanwhile, for...
Gespeichert in:
Veröffentlicht in: | Journal of global optimization 2021-07, Vol.80 (3), p.679-710 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The capacitated vehicle routing problem (CVRP) is the well-known combinatorial optimization problem having numerous practically important applications. CVRP is strongly NP-hard (even on the Euclidean plane), hard to approximate in general case and APX-complete for an arbitrary metric. Meanwhile, for the geometric settings of the problem, there are known a number of quasi-polynomial and even polynomial time approximation schemes. Among these results, the well-known QPTAS proposed by Das and Mathieu appears to be the most general. In this paper, we propose the first extension of this scheme to a more wide class of metric spaces. Actually, we show that the metric CVRP has a QPTAS any time when the problem is set up in the metric space of any fixed doubling dimension
d
>
1
and the capacity does not exceed
polylog
(
n
)
. |
---|---|
ISSN: | 0925-5001 1573-2916 |
DOI: | 10.1007/s10898-020-00990-0 |