Maximum Likelihood Calibration of Stochastic Multipath Radio Channel Models
We propose Monte Carlo maximum likelihood estimation as a novel approach in the context of calibration and selection of stochastic channel models. First, considering a Turin channel model with inhomogeneous arrival rate as a prototypical example, we explain how the general statistical methodology is...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2021-07, Vol.69 (7), p.4058-4069 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose Monte Carlo maximum likelihood estimation as a novel approach in the context of calibration and selection of stochastic channel models. First, considering a Turin channel model with inhomogeneous arrival rate as a prototypical example, we explain how the general statistical methodology is adapted and refined for the specific requirements and challenges of stochastic multipath channel models. Then, we illustrate the advantages and pitfalls of the method based on simulated data. Finally, we apply our calibration method to wideband signal data from indoor channels. |
---|---|
ISSN: | 0018-926X 1558-2221 |
DOI: | 10.1109/TAP.2020.3044379 |