Inequalities for Eigenvalues of the Sub-Laplacian on Strictly Pseudoconvex CR Manifolds
The sub-Laplacian plays a key role in CR geometry. In this paper, we investigate eigenvalues of the sub-Laplacian on bounded domains of strictly pseudoconvex CR manifolds, strictly pseudoconvex CR manifolds submersed in Riemannian manifolds. We establish some Levitin–Parnovski-type inequalities and...
Gespeichert in:
Veröffentlicht in: | Mathematical Notes 2021-05, Vol.109 (5-6), p.735-747 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 747 |
---|---|
container_issue | 5-6 |
container_start_page | 735 |
container_title | Mathematical Notes |
container_volume | 109 |
creator | Sun, He-Jun |
description | The sub-Laplacian plays a key role in CR geometry. In this paper, we investigate eigenvalues of the sub-Laplacian on bounded domains of strictly pseudoconvex CR manifolds, strictly pseudoconvex CR manifolds submersed in Riemannian manifolds. We establish some Levitin–Parnovski-type inequalities and Cheng–Huang–Wei-type inequalities for their eigenvalues. As their applications, we derive some results for the standard CR sphere
in
, the Heisenberg group
, a strictly pseudoconvex CR manifold submersed in a minimal submanifold in
, domains of the standard sphere
and the projective space
. |
doi_str_mv | 10.1134/S0001434621050072 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548930378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548930378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-1f8a56ab8a689eb91f91def64e6c750f631d1bed0e455c813d63a45de48ada843</originalsourceid><addsrcrecordid>eNp1UF1LwzAUDaLgnP4A3wI-V3Obj6aPMqYOJopTfCxpk8yOmmxJO9y_N2OCD-LT5XA-7uEgdAnkGoCymwUhBBhlIgfCCSnyIzQCXtBMykIco9Gezvb8KTqLcZUQCCAj9D5zZjOoru1bE7H1AU_bpXFb1Q0Je4v7D4MXQ53N1bpTTasc9g4v-tA2fbfDz9EM2jfebc0XnrzgR-Va6zsdz9GJVV00Fz93jN7upq-Th2z-dD-b3M6zBkrZZ2Cl4kLVUglZmroEW4I2VjAjmoITKyhoqI0mhnHeSKBaUMW4NkwqrSSjY3R1yF0Hv0mV-2rlh-DSyyrnTJaU0EImFRxUTfAxBmOrdWg_VdhVQKr9ftWf_ZInP3hi0rqlCb_J_5u-AVvpccQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548930378</pqid></control><display><type>article</type><title>Inequalities for Eigenvalues of the Sub-Laplacian on Strictly Pseudoconvex CR Manifolds</title><source>SpringerLink (Online service)</source><creator>Sun, He-Jun</creator><creatorcontrib>Sun, He-Jun</creatorcontrib><description>The sub-Laplacian plays a key role in CR geometry. In this paper, we investigate eigenvalues of the sub-Laplacian on bounded domains of strictly pseudoconvex CR manifolds, strictly pseudoconvex CR manifolds submersed in Riemannian manifolds. We establish some Levitin–Parnovski-type inequalities and Cheng–Huang–Wei-type inequalities for their eigenvalues. As their applications, we derive some results for the standard CR sphere
in
, the Heisenberg group
, a strictly pseudoconvex CR manifold submersed in a minimal submanifold in
, domains of the standard sphere
and the projective space
.</description><identifier>ISSN: 0001-4346</identifier><identifier>ISSN: 1067-9073</identifier><identifier>EISSN: 1573-8876</identifier><identifier>DOI: 10.1134/S0001434621050072</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Domains ; Eigenvalues ; Inequalities ; Manifolds (mathematics) ; Mathematics ; Mathematics and Statistics ; Riemann manifold</subject><ispartof>Mathematical Notes, 2021-05, Vol.109 (5-6), p.735-747</ispartof><rights>Pleiades Publishing, Ltd. 2021</rights><rights>Pleiades Publishing, Ltd. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-1f8a56ab8a689eb91f91def64e6c750f631d1bed0e455c813d63a45de48ada843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0001434621050072$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0001434621050072$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sun, He-Jun</creatorcontrib><title>Inequalities for Eigenvalues of the Sub-Laplacian on Strictly Pseudoconvex CR Manifolds</title><title>Mathematical Notes</title><addtitle>Math Notes</addtitle><description>The sub-Laplacian plays a key role in CR geometry. In this paper, we investigate eigenvalues of the sub-Laplacian on bounded domains of strictly pseudoconvex CR manifolds, strictly pseudoconvex CR manifolds submersed in Riemannian manifolds. We establish some Levitin–Parnovski-type inequalities and Cheng–Huang–Wei-type inequalities for their eigenvalues. As their applications, we derive some results for the standard CR sphere
in
, the Heisenberg group
, a strictly pseudoconvex CR manifold submersed in a minimal submanifold in
, domains of the standard sphere
and the projective space
.</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Domains</subject><subject>Eigenvalues</subject><subject>Inequalities</subject><subject>Manifolds (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Riemann manifold</subject><issn>0001-4346</issn><issn>1067-9073</issn><issn>1573-8876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UF1LwzAUDaLgnP4A3wI-V3Obj6aPMqYOJopTfCxpk8yOmmxJO9y_N2OCD-LT5XA-7uEgdAnkGoCymwUhBBhlIgfCCSnyIzQCXtBMykIco9Gezvb8KTqLcZUQCCAj9D5zZjOoru1bE7H1AU_bpXFb1Q0Je4v7D4MXQ53N1bpTTasc9g4v-tA2fbfDz9EM2jfebc0XnrzgR-Va6zsdz9GJVV00Fz93jN7upq-Th2z-dD-b3M6zBkrZZ2Cl4kLVUglZmroEW4I2VjAjmoITKyhoqI0mhnHeSKBaUMW4NkwqrSSjY3R1yF0Hv0mV-2rlh-DSyyrnTJaU0EImFRxUTfAxBmOrdWg_VdhVQKr9ftWf_ZInP3hi0rqlCb_J_5u-AVvpccQ</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Sun, He-Jun</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210501</creationdate><title>Inequalities for Eigenvalues of the Sub-Laplacian on Strictly Pseudoconvex CR Manifolds</title><author>Sun, He-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-1f8a56ab8a689eb91f91def64e6c750f631d1bed0e455c813d63a45de48ada843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Domains</topic><topic>Eigenvalues</topic><topic>Inequalities</topic><topic>Manifolds (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Riemann manifold</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, He-Jun</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical Notes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, He-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inequalities for Eigenvalues of the Sub-Laplacian on Strictly Pseudoconvex CR Manifolds</atitle><jtitle>Mathematical Notes</jtitle><stitle>Math Notes</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>109</volume><issue>5-6</issue><spage>735</spage><epage>747</epage><pages>735-747</pages><issn>0001-4346</issn><issn>1067-9073</issn><eissn>1573-8876</eissn><abstract>The sub-Laplacian plays a key role in CR geometry. In this paper, we investigate eigenvalues of the sub-Laplacian on bounded domains of strictly pseudoconvex CR manifolds, strictly pseudoconvex CR manifolds submersed in Riemannian manifolds. We establish some Levitin–Parnovski-type inequalities and Cheng–Huang–Wei-type inequalities for their eigenvalues. As their applications, we derive some results for the standard CR sphere
in
, the Heisenberg group
, a strictly pseudoconvex CR manifold submersed in a minimal submanifold in
, domains of the standard sphere
and the projective space
.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0001434621050072</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4346 |
ispartof | Mathematical Notes, 2021-05, Vol.109 (5-6), p.735-747 |
issn | 0001-4346 1067-9073 1573-8876 |
language | eng |
recordid | cdi_proquest_journals_2548930378 |
source | SpringerLink (Online service) |
subjects | 14/34 639/766/189 639/766/530 639/766/747 Domains Eigenvalues Inequalities Manifolds (mathematics) Mathematics Mathematics and Statistics Riemann manifold |
title | Inequalities for Eigenvalues of the Sub-Laplacian on Strictly Pseudoconvex CR Manifolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A04%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inequalities%20for%20Eigenvalues%20of%20the%20Sub-Laplacian%20on%20Strictly%20Pseudoconvex%20CR%20Manifolds&rft.jtitle=Mathematical%20Notes&rft.au=Sun,%20He-Jun&rft.date=2021-05-01&rft.volume=109&rft.issue=5-6&rft.spage=735&rft.epage=747&rft.pages=735-747&rft.issn=0001-4346&rft.eissn=1573-8876&rft_id=info:doi/10.1134/S0001434621050072&rft_dat=%3Cproquest_cross%3E2548930378%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548930378&rft_id=info:pmid/&rfr_iscdi=true |