Inequalities for Eigenvalues of the Sub-Laplacian on Strictly Pseudoconvex CR Manifolds
The sub-Laplacian plays a key role in CR geometry. In this paper, we investigate eigenvalues of the sub-Laplacian on bounded domains of strictly pseudoconvex CR manifolds, strictly pseudoconvex CR manifolds submersed in Riemannian manifolds. We establish some Levitin–Parnovski-type inequalities and...
Gespeichert in:
Veröffentlicht in: | Mathematical Notes 2021-05, Vol.109 (5-6), p.735-747 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The sub-Laplacian plays a key role in CR geometry. In this paper, we investigate eigenvalues of the sub-Laplacian on bounded domains of strictly pseudoconvex CR manifolds, strictly pseudoconvex CR manifolds submersed in Riemannian manifolds. We establish some Levitin–Parnovski-type inequalities and Cheng–Huang–Wei-type inequalities for their eigenvalues. As their applications, we derive some results for the standard CR sphere
in
, the Heisenberg group
, a strictly pseudoconvex CR manifold submersed in a minimal submanifold in
, domains of the standard sphere
and the projective space
. |
---|---|
ISSN: | 0001-4346 1067-9073 1573-8876 |
DOI: | 10.1134/S0001434621050072 |