Inequalities for Eigenvalues of the Sub-Laplacian on Strictly Pseudoconvex CR Manifolds

The sub-Laplacian plays a key role in CR geometry. In this paper, we investigate eigenvalues of the sub-Laplacian on bounded domains of strictly pseudoconvex CR manifolds, strictly pseudoconvex CR manifolds submersed in Riemannian manifolds. We establish some Levitin–Parnovski-type inequalities and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Notes 2021-05, Vol.109 (5-6), p.735-747
1. Verfasser: Sun, He-Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The sub-Laplacian plays a key role in CR geometry. In this paper, we investigate eigenvalues of the sub-Laplacian on bounded domains of strictly pseudoconvex CR manifolds, strictly pseudoconvex CR manifolds submersed in Riemannian manifolds. We establish some Levitin–Parnovski-type inequalities and Cheng–Huang–Wei-type inequalities for their eigenvalues. As their applications, we derive some results for the standard CR sphere in , the Heisenberg group , a strictly pseudoconvex CR manifold submersed in a minimal submanifold in , domains of the standard sphere and the projective space .
ISSN:0001-4346
1067-9073
1573-8876
DOI:10.1134/S0001434621050072