Does Acid Addition Improve Liquid Hot Water Pretreatment of Lignocellulosic Biomass towards Biohydrogen and Biogas Production?

The effect of liquid hot water (LHW) pretreatment with or without acid addition (A-LHW) on the production of hydrogen—through dark fermentation (DF)—and methane—through anaerobic digestion (AD)—using three different lignocellulosic biomass types (sunflower straw (SS), grass lawn (GL), and poplar saw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2020-11, Vol.12 (21), p.8935
Hauptverfasser: Dimitrellos, George, Lyberatos, Gerasimos, Antonopoulou, Georgia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of liquid hot water (LHW) pretreatment with or without acid addition (A-LHW) on the production of hydrogen—through dark fermentation (DF)—and methane—through anaerobic digestion (AD)—using three different lignocellulosic biomass types (sunflower straw (SS), grass lawn (GL), and poplar sawdust (PS)) was investigated. Both pretreatment methods led to hemicellulose degradation, but A-LHW resulted in the release of more potential inhibitors (furans and acids) than the LHW pretreatment. Biological hydrogen production (BHP) of the cellulose-rich solid fractions obtained after LHW and A-LHW pretreatment was enhanced compared to the untreated substrates. Due to the release of inhibitory compounds, LHW pretreatment led to higher biochemical methane potential (BMP) than A-LHW pretreatment when both separated fractions (liquid and solid) obtained after pretreatments were used for AD. The recovered energy in the form of methane with LHW pretreatment was 8.4, 12.5, and 7.5 MJ/kg total solids (TS) for SS, GL, and PS, respectively.
ISSN:2071-1050
2071-1050
DOI:10.3390/su12218935