Sub-Feller Semigroups Generated by Pseudodifferential Operators on Symmetric Spaces of Noncompact Type
We consider global pseudodifferential operators on symmetric spaces of noncompact type, defined using spherical functions. The associated symbols have a natural probabilistic form that extend the notion of the characteristic exponent appearing in Gangolli's Lévy-Khinchine formula to a function...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-08 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider global pseudodifferential operators on symmetric spaces of noncompact type, defined using spherical functions. The associated symbols have a natural probabilistic form that extend the notion of the characteristic exponent appearing in Gangolli's Lévy-Khinchine formula to a function of two variables. The Hille-Yosida-Ray theorem is used to obtain conditions on such a symbol so that the corresponding pseudodifferential operator has an extension that generates a sub-Feller semigroup, generalising existing results for Euclidean space. |
---|---|
ISSN: | 2331-8422 |