Green Travel Mode: Trajectory Data Cleansing Method for Shared Electric Bicycles

Location-based service (LBS) technologies provide a new perspective for the analysis of the spatiotemporal dynamics of urban systems. Previous studies have been performed using data from mobile communications, public transport vehicles (taxis and buses), wireless hotspots and shared bicycles. Howeve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2019-03, Vol.11 (5), p.1429
Hauptverfasser: Li, Chengming, Dai, Zhaoxin, Peng, Weixiang, Shen, Jianming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Location-based service (LBS) technologies provide a new perspective for the analysis of the spatiotemporal dynamics of urban systems. Previous studies have been performed using data from mobile communications, public transport vehicles (taxis and buses), wireless hotspots and shared bicycles. However, corresponding analyses based on shared electric bicycle (e-bike) have not yet been reported in the literature. Data cleaning and extraction of the origin-destination (O-D) are prerequisites for the study of the spatiotemporal patterns of urban systems. In this study, based on a dataset of a week of shared e-bike GPS data in the city of Tengzhou (Shandong Province), sparse characteristics of discontinuities and nonuniformities of the GPS trajectory and a lack of riding status are observed. Based on the characteristics and the actual road, we proposed a method for the extraction of O-D pairs for every trajectory segment from continuous and stateless trajectory GPS data. This method cleans the incomplete and invalid trajectory records, which is suitable for sparse trajectory data. A week of shared e-bike GPS data in Tengzhou is scrubbed and, by the sampling method, the extraction accuracy of 91% is verified. We provide preliminary cleaning rules for sparse trajectory shared e-bike data for the first time, which are highly reliable and suitable for data mining from other forms of sparse GPS trajectory data.
ISSN:2071-1050
2071-1050
DOI:10.3390/su11051429