Towards Machine Learning-Based Meta-Studies: Applications to Cosmological Parameters

We develop a new model for automatic extraction of reported measurement values from the astrophysical literature, utilising modern Natural Language Processing techniques. We use this model to extract measurements present in the abstracts of the approximately 248,000 astrophysics articles from the ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-07
Hauptverfasser: Crossland, Tom, Stenetorp, Pontus, Kawata, Daisuke, Riedel, Sebastian, Kitching, Thomas D, Deshpande, Anurag, Kimpson, Tom, Liew-Cain, Choong Ling, Pedersen, Christian, Piras, Davide, Sharma, Monu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Crossland, Tom
Stenetorp, Pontus
Kawata, Daisuke
Riedel, Sebastian
Kitching, Thomas D
Deshpande, Anurag
Kimpson, Tom
Liew-Cain, Choong Ling
Pedersen, Christian
Piras, Davide
Sharma, Monu
description We develop a new model for automatic extraction of reported measurement values from the astrophysical literature, utilising modern Natural Language Processing techniques. We use this model to extract measurements present in the abstracts of the approximately 248,000 astrophysics articles from the arXiv repository, yielding a database containing over 231,000 astrophysical numerical measurements. Furthermore, we present an online interface (Numerical Atlas) to allow users to query and explore this database, based on parameter names and symbolic representations, and download the resulting datasets for their own research uses. To illustrate potential use cases we then collect values for nine different cosmological parameters using this tool. From these results we can clearly observe the historical trends in the reported values of these quantities over the past two decades, and see the impacts of landmark publications on our understanding of cosmology.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2548482309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548482309</sourcerecordid><originalsourceid>FETCH-proquest_journals_25484823093</originalsourceid><addsrcrecordid>eNqNisEKgkAUAJcgSMp_WOgs2K6WdSspOiQEeZeHvmxl3bV9K_1-HvqATgMzM2OBkHITZYkQCxYSdXEci-1OpKkMWFnaD7iGeAH1SxnkNwRnlGmjExA2vEAP0cOPjUI68OMwaFWDV9YQ95bnlnqrbTs5ze_goEePjlZs_gRNGP64ZOvLucyv0eDse0TyVWdHZ6ZUiTTJkkzIeC__u75nmUBx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548482309</pqid></control><display><type>article</type><title>Towards Machine Learning-Based Meta-Studies: Applications to Cosmological Parameters</title><source>Free E- Journals</source><creator>Crossland, Tom ; Stenetorp, Pontus ; Kawata, Daisuke ; Riedel, Sebastian ; Kitching, Thomas D ; Deshpande, Anurag ; Kimpson, Tom ; Liew-Cain, Choong Ling ; Pedersen, Christian ; Piras, Davide ; Sharma, Monu</creator><creatorcontrib>Crossland, Tom ; Stenetorp, Pontus ; Kawata, Daisuke ; Riedel, Sebastian ; Kitching, Thomas D ; Deshpande, Anurag ; Kimpson, Tom ; Liew-Cain, Choong Ling ; Pedersen, Christian ; Piras, Davide ; Sharma, Monu</creatorcontrib><description>We develop a new model for automatic extraction of reported measurement values from the astrophysical literature, utilising modern Natural Language Processing techniques. We use this model to extract measurements present in the abstracts of the approximately 248,000 astrophysics articles from the arXiv repository, yielding a database containing over 231,000 astrophysical numerical measurements. Furthermore, we present an online interface (Numerical Atlas) to allow users to query and explore this database, based on parameter names and symbolic representations, and download the resulting datasets for their own research uses. To illustrate potential use cases we then collect values for nine different cosmological parameters using this tool. From these results we can clearly observe the historical trends in the reported values of these quantities over the past two decades, and see the impacts of landmark publications on our understanding of cosmology.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Astrophysics ; Cosmology ; Machine learning ; Mathematical models ; Natural language processing ; Parameters</subject><ispartof>arXiv.org, 2021-07</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Crossland, Tom</creatorcontrib><creatorcontrib>Stenetorp, Pontus</creatorcontrib><creatorcontrib>Kawata, Daisuke</creatorcontrib><creatorcontrib>Riedel, Sebastian</creatorcontrib><creatorcontrib>Kitching, Thomas D</creatorcontrib><creatorcontrib>Deshpande, Anurag</creatorcontrib><creatorcontrib>Kimpson, Tom</creatorcontrib><creatorcontrib>Liew-Cain, Choong Ling</creatorcontrib><creatorcontrib>Pedersen, Christian</creatorcontrib><creatorcontrib>Piras, Davide</creatorcontrib><creatorcontrib>Sharma, Monu</creatorcontrib><title>Towards Machine Learning-Based Meta-Studies: Applications to Cosmological Parameters</title><title>arXiv.org</title><description>We develop a new model for automatic extraction of reported measurement values from the astrophysical literature, utilising modern Natural Language Processing techniques. We use this model to extract measurements present in the abstracts of the approximately 248,000 astrophysics articles from the arXiv repository, yielding a database containing over 231,000 astrophysical numerical measurements. Furthermore, we present an online interface (Numerical Atlas) to allow users to query and explore this database, based on parameter names and symbolic representations, and download the resulting datasets for their own research uses. To illustrate potential use cases we then collect values for nine different cosmological parameters using this tool. From these results we can clearly observe the historical trends in the reported values of these quantities over the past two decades, and see the impacts of landmark publications on our understanding of cosmology.</description><subject>Astrophysics</subject><subject>Cosmology</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Natural language processing</subject><subject>Parameters</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNisEKgkAUAJcgSMp_WOgs2K6WdSspOiQEeZeHvmxl3bV9K_1-HvqATgMzM2OBkHITZYkQCxYSdXEci-1OpKkMWFnaD7iGeAH1SxnkNwRnlGmjExA2vEAP0cOPjUI68OMwaFWDV9YQ95bnlnqrbTs5ze_goEePjlZs_gRNGP64ZOvLucyv0eDse0TyVWdHZ6ZUiTTJkkzIeC__u75nmUBx</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Crossland, Tom</creator><creator>Stenetorp, Pontus</creator><creator>Kawata, Daisuke</creator><creator>Riedel, Sebastian</creator><creator>Kitching, Thomas D</creator><creator>Deshpande, Anurag</creator><creator>Kimpson, Tom</creator><creator>Liew-Cain, Choong Ling</creator><creator>Pedersen, Christian</creator><creator>Piras, Davide</creator><creator>Sharma, Monu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210701</creationdate><title>Towards Machine Learning-Based Meta-Studies: Applications to Cosmological Parameters</title><author>Crossland, Tom ; Stenetorp, Pontus ; Kawata, Daisuke ; Riedel, Sebastian ; Kitching, Thomas D ; Deshpande, Anurag ; Kimpson, Tom ; Liew-Cain, Choong Ling ; Pedersen, Christian ; Piras, Davide ; Sharma, Monu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25484823093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astrophysics</topic><topic>Cosmology</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Natural language processing</topic><topic>Parameters</topic><toplevel>online_resources</toplevel><creatorcontrib>Crossland, Tom</creatorcontrib><creatorcontrib>Stenetorp, Pontus</creatorcontrib><creatorcontrib>Kawata, Daisuke</creatorcontrib><creatorcontrib>Riedel, Sebastian</creatorcontrib><creatorcontrib>Kitching, Thomas D</creatorcontrib><creatorcontrib>Deshpande, Anurag</creatorcontrib><creatorcontrib>Kimpson, Tom</creatorcontrib><creatorcontrib>Liew-Cain, Choong Ling</creatorcontrib><creatorcontrib>Pedersen, Christian</creatorcontrib><creatorcontrib>Piras, Davide</creatorcontrib><creatorcontrib>Sharma, Monu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crossland, Tom</au><au>Stenetorp, Pontus</au><au>Kawata, Daisuke</au><au>Riedel, Sebastian</au><au>Kitching, Thomas D</au><au>Deshpande, Anurag</au><au>Kimpson, Tom</au><au>Liew-Cain, Choong Ling</au><au>Pedersen, Christian</au><au>Piras, Davide</au><au>Sharma, Monu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Towards Machine Learning-Based Meta-Studies: Applications to Cosmological Parameters</atitle><jtitle>arXiv.org</jtitle><date>2021-07-01</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We develop a new model for automatic extraction of reported measurement values from the astrophysical literature, utilising modern Natural Language Processing techniques. We use this model to extract measurements present in the abstracts of the approximately 248,000 astrophysics articles from the arXiv repository, yielding a database containing over 231,000 astrophysical numerical measurements. Furthermore, we present an online interface (Numerical Atlas) to allow users to query and explore this database, based on parameter names and symbolic representations, and download the resulting datasets for their own research uses. To illustrate potential use cases we then collect values for nine different cosmological parameters using this tool. From these results we can clearly observe the historical trends in the reported values of these quantities over the past two decades, and see the impacts of landmark publications on our understanding of cosmology.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2548482309
source Free E- Journals
subjects Astrophysics
Cosmology
Machine learning
Mathematical models
Natural language processing
Parameters
title Towards Machine Learning-Based Meta-Studies: Applications to Cosmological Parameters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A12%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Towards%20Machine%20Learning-Based%20Meta-Studies:%20Applications%20to%20Cosmological%20Parameters&rft.jtitle=arXiv.org&rft.au=Crossland,%20Tom&rft.date=2021-07-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2548482309%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548482309&rft_id=info:pmid/&rfr_iscdi=true