Towards Machine Learning-Based Meta-Studies: Applications to Cosmological Parameters

We develop a new model for automatic extraction of reported measurement values from the astrophysical literature, utilising modern Natural Language Processing techniques. We use this model to extract measurements present in the abstracts of the approximately 248,000 astrophysics articles from the ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-07
Hauptverfasser: Crossland, Tom, Stenetorp, Pontus, Kawata, Daisuke, Riedel, Sebastian, Kitching, Thomas D, Deshpande, Anurag, Kimpson, Tom, Liew-Cain, Choong Ling, Pedersen, Christian, Piras, Davide, Sharma, Monu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a new model for automatic extraction of reported measurement values from the astrophysical literature, utilising modern Natural Language Processing techniques. We use this model to extract measurements present in the abstracts of the approximately 248,000 astrophysics articles from the arXiv repository, yielding a database containing over 231,000 astrophysical numerical measurements. Furthermore, we present an online interface (Numerical Atlas) to allow users to query and explore this database, based on parameter names and symbolic representations, and download the resulting datasets for their own research uses. To illustrate potential use cases we then collect values for nine different cosmological parameters using this tool. From these results we can clearly observe the historical trends in the reported values of these quantities over the past two decades, and see the impacts of landmark publications on our understanding of cosmology.
ISSN:2331-8422