Quillen connection and the uniformization of Riemann surfaces
The Quillen connection on \({\mathcal L} \rightarrow {\mathcal M}_g\), where \({\mathcal L}^*\) is the Hodge line bundle over the moduli stack of smooth complex projective curves curves \({\mathcal M}_g\), \(g \geq 5\), is uniquely determined by the condition that its curvature is the Weil--Petersso...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-07 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Quillen connection on \({\mathcal L} \rightarrow {\mathcal M}_g\), where \({\mathcal L}^*\) is the Hodge line bundle over the moduli stack of smooth complex projective curves curves \({\mathcal M}_g\), \(g \geq 5\), is uniquely determined by the condition that its curvature is the Weil--Petersson form on \({\mathcal M}_g\). The bundle of holomorphic connections on \({\mathcal L}\) has a unique holomorphic isomorphism with the bundle on \({\mathcal M}_g\) given by the moduli stack of projective structures. This isomorphism takes the \(C^\infty\) section of the first bundle given by the Quillen connection on \({\mathcal L}\) to the \(C^\infty\) section of the second bundle given by the uniformization theorem. Therefore, any one of these two sections determines the other uniquely. |
---|---|
ISSN: | 2331-8422 |