Quillen connection and the uniformization of Riemann surfaces

The Quillen connection on \({\mathcal L} \rightarrow {\mathcal M}_g\), where \({\mathcal L}^*\) is the Hodge line bundle over the moduli stack of smooth complex projective curves curves \({\mathcal M}_g\), \(g \geq 5\), is uniquely determined by the condition that its curvature is the Weil--Petersso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-07
Hauptverfasser: Biswas, Indranil, Favale, Filippo Francesco, Pirola, Gian Pietro, Torelli, Sara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Quillen connection on \({\mathcal L} \rightarrow {\mathcal M}_g\), where \({\mathcal L}^*\) is the Hodge line bundle over the moduli stack of smooth complex projective curves curves \({\mathcal M}_g\), \(g \geq 5\), is uniquely determined by the condition that its curvature is the Weil--Petersson form on \({\mathcal M}_g\). The bundle of holomorphic connections on \({\mathcal L}\) has a unique holomorphic isomorphism with the bundle on \({\mathcal M}_g\) given by the moduli stack of projective structures. This isomorphism takes the \(C^\infty\) section of the first bundle given by the Quillen connection on \({\mathcal L}\) to the \(C^\infty\) section of the second bundle given by the uniformization theorem. Therefore, any one of these two sections determines the other uniquely.
ISSN:2331-8422