Locally octahedral and locally almost square Köthe-Bochner spaces
It has been proved in [J.-D. Hardtke, J. Math. Phys. Anal. Geom. 16, no.2, 119--137 (2020)] that a K\"othe-Bochner space \(E(X)\) is locally octahedral/locally almost square if \(X\) has the respective property and the simple functions are dense in \(E(X)\). Here we show that the result still h...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-07 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It has been proved in [J.-D. Hardtke, J. Math. Phys. Anal. Geom. 16, no.2, 119--137 (2020)] that a K\"othe-Bochner space \(E(X)\) is locally octahedral/locally almost square if \(X\) has the respective property and the simple functions are dense in \(E(X)\). Here we show that the result still holds true without the density assumption. The proof makes use of the Kuratowski-Ryll-Nardzewski Theorem on measurable selections. |
---|---|
ISSN: | 2331-8422 |