A Traceable and Privacy-Preserving Authentication for UAV Communication Control System

In recent years, the concept of the Internet of Things has been introduced. Information, communication, and network technology can be integrated, so that the unmanned aerial vehicle (UAV) from consumer leisure and entertainment toys can be utilized in high value commercial, agricultural, and defense...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2020-01, Vol.9 (1), p.62
Hauptverfasser: Chen, Chin-Ling, Deng, Yong-Yuan, Weng, Wei, Chen, Chi-Hua, Chiu, Yi-Jui, Wu, Chih-Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, the concept of the Internet of Things has been introduced. Information, communication, and network technology can be integrated, so that the unmanned aerial vehicle (UAV) from consumer leisure and entertainment toys can be utilized in high value commercial, agricultural, and defense field applications, and become a killer product. In this paper, a traceable and privacy-preserving authentication is proposed to integrate the elliptic curve cryptography (ECC), digital signature, hash function, and other cryptography mechanisms for UAV application. For sensitive areas, players must obtain flight approval from the ground control station before they can control the UAV in these areas. The traditional cryptography services such as integrity, confidentiality, anonymity, availability, privacy, non-repudiation, defense against DoS (Denial-of-Service) attack, and spoofing attack can be ensured. The feasibility of mutual authentication was proved by BAN logic. In addition, the computation cost and the communication cost of the proposed scheme were analyzed. The proposed scheme provides a novel application field.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics9010062