Performance-Aware Scheduling of Parallel Applications on Non-Dedicated Clusters

This work presents a HPC framework that provides new strategies for resource management and job scheduling, based on executing different applications in shared compute nodes, maximizing platform utilization. The framework includes a scalable monitoring tool that is able to analyze the platform’s com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2019-09, Vol.8 (9), p.982
Hauptverfasser: Cascajo, Alberto, Singh, David E., Carretero, Jesus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work presents a HPC framework that provides new strategies for resource management and job scheduling, based on executing different applications in shared compute nodes, maximizing platform utilization. The framework includes a scalable monitoring tool that is able to analyze the platform’s compute node utilization. We also introduce an extension of CLARISSE, a middleware for data-staging coordination and control on large-scale HPC platforms that uses the information provided by the monitor in combination with application-level analysis to detect performance degradation in the running applications. This degradation, caused by the fact that the applications share the compute nodes and may compete for their resources, is avoided by means of dynamic application migration. A description of the architecture, as well as a practical evaluation of the proposal, shows significant performance improvements up to 20% in the makespan and 10% in energy consumption compared to a non-optimized execution.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics8090982