Energy Rate Maximization with Sum-Rate Constraint for SWIPT in Multiple-Access Channels

This paper considers simultaneous wireless information and power transfer (SWIPT) systems in the two-user Gaussian multiple access channel (G-MAC). In SWIPT systems, for a transmit signal each transmitter consists of an information-carrying signal and energy-carrying signal. By controlling a differe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2019, Vol.8 (12), p.1525
Hauptverfasser: Shim, Yeonggyu, Shin, Wonjae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers simultaneous wireless information and power transfer (SWIPT) systems in the two-user Gaussian multiple access channel (G-MAC). In SWIPT systems, for a transmit signal each transmitter consists of an information-carrying signal and energy-carrying signal. By controlling a different set of the power for the information transmission and power for the energy transmission under a total power constraint, the information sum-rate and energy transmission rate can be achieved. As the information carrying-to-transmit power ratio at transmitters and the information sum-rate increases, however, the energy transmission rate decreases. In other words, there is a fundamental trade-off between the information sum-rate and the energy transmission rate according to the power-splitting ratio at each transmitter. Motivated by this, this paper proposes an optimal power-splitting scheme that maximizes the energy transmission rate subject to a minimum sum-rate constraint. In particular, a closed-form expression of the power-splitting coefficient is presented for the two-user G-MAC under a minimum sum-rate constraint. Numerical results show that the energy rate of the proposed optimal power-splitting scheme is greater than that of the fixed power-splitting scheme.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics8121525