Mitigating the Load Frequency Fluctuations of Interconnected Power Systems Using Model Predictive Controller

The penetration of renewable energy sources into the conventional power systems are evolving day by day. Therefore, in this paper, a photovoltaic (PV) connected thermal system is discussed and analyzed by keeping PV to operate at maximum power point (MPP). The main problem in the interconnection of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2019-02, Vol.8 (2), p.156
Hauptverfasser: Gulzar, Muhammad, Rizvi, Syed, Javed, Muhammad, Sibtain, Daud, Salah ud Din, Rubab
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The penetration of renewable energy sources into the conventional power systems are evolving day by day. Therefore, in this paper, a photovoltaic (PV) connected thermal system is discussed and analyzed by keeping PV to operate at maximum power point (MPP). The main problem in the interconnection of these systems is load frequency fluctuations due to different load changing conditions. The model predictive controller (MPC) has the ability to predict the target value at real-time with fast convergence. Therefore, MPC is proposed to negate this problem by giving minimum oscillation. The comparison analysis is carried out with other conventional controllers, including genetic algorithm-based PI, firefly algorithm-based PI and PI controller. Simulation results clearly exhibit the outclass performance of MPC over all other controllers.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics8020156