Anti-Spoofing of Live Face Authentication on Smartphone
Our proposed method is capable of authenticating the input image is from real user or spoofing attack, including paper photograph, digital photograph, and video, using only the Red, Green, Blue (RGB) frontal camera of common smart phone, without the help of depth camera or infrared thermal sensor. W...
Gespeichert in:
Veröffentlicht in: | Journal of Information Science and Engineering 2021-05, Vol.37 (3), p.605-616 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Our proposed method is capable of authenticating the input image is from real user or spoofing attack, including paper photograph, digital photograph, and video, using only the Red, Green, Blue (RGB) frontal camera of common smart phone, without the help of depth camera or infrared thermal sensor. We first capture live faces in each frame of input video streams by single shot multi-box detector then feed into our designed convolution neural network after certain data augmentation and finally obtain a well-trained spoof face classifier. Finally, we compared to Parkin and Grinchuk's results, using dataset CASIA-SURF, and compare the result of vgg16, InceptionNet, ResNet, DenseNet and MobileNet in CASIA-SURFT dataset. |
---|---|
ISSN: | 1016-2364 |
DOI: | 10.6688/JISE.202105_37(3).0007 |