Passive Current Control Design for MMC in HVDC Systems through Energy Reshaping
The complexity of the internal dynamics of a modular multi-level converter (MMC) has raised severe issues for designing corresponding controllers. The existing MMC cascaded control strategies, based on classical linear control theory, require a relatively complex structure to achieve control objecti...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2019-09, Vol.8 (9), p.967 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The complexity of the internal dynamics of a modular multi-level converter (MMC) has raised severe issues for designing corresponding controllers. The existing MMC cascaded control strategies, based on classical linear control theory, require a relatively complex structure to achieve control objectives and the parameter tuning processes during the corresponding controller design are normally difficult to solve for the highly non-linear systems with highly coupled states in MMC. On account of this, advanced controllers are required for the regulation tasks of MMC. Passivity is introduced into the MMC control system by the passive control (PC) proposed in this paper. PC can provide an extra damping effect to help save energy through utilizing passivity in the system. A controllable de-coupled form is achieved by passivation of the output calculation. Hence, well-tuned controllers can be designed and employed to effectively regulate the output current and inner differential currents of the MMC under system operating point variation. Simulation results yield numerical data that show significantly improved steady-state and transient-state performances with greatly reduced control costs. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics8090967 |