Modeling and Simulation-Based Layout Optimization for Tolerance to TID Effect on n-MOSFET
In the present study, the layout structure of an n-MOSFET, which is vulnerable to radiation, was designed in a different way to enhance its tolerance to radiation. Radiation damage assessment was conducted using modeling and simulation (M&S) techniques before actual semiconductor process fabrica...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2021-04, Vol.10 (8), p.887 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present study, the layout structure of an n-MOSFET, which is vulnerable to radiation, was designed in a different way to enhance its tolerance to radiation. Radiation damage assessment was conducted using modeling and simulation (M&S) techniques before actual semiconductor process fabrication and radiation tests to verify its tolerance properties. Based on the M&S techniques, the role of each layer was determined to improve the radiation tolerance of semiconductors, and the layout design of an n-MOSFET with enhanced radiation tolerance was optimized. The optimized radiation-tolerant n-MOSFET design was implemented in the 0.18-um CMOS bulk process, and radiation exposure tests were conducted on the device. A cumulative radiation dose up to 2 Mrad(Si) was applied to verify its radiation-tolerant performance. Developing new devices using M&S techniques for radiation damage assessment allows reliable estimates of their electrical and radiation-tolerant properties to be obtained in advance of the actual manufacturing process, thereby minimizing development costs and time. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics10080887 |