Modeling and Simulation-Based Layout Optimization for Tolerance to TID Effect on n-MOSFET

In the present study, the layout structure of an n-MOSFET, which is vulnerable to radiation, was designed in a different way to enhance its tolerance to radiation. Radiation damage assessment was conducted using modeling and simulation (M&S) techniques before actual semiconductor process fabrica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2021-04, Vol.10 (8), p.887
Hauptverfasser: Lee, Minwoong, Lee, Namho, Kim, Jongyeol, Hwang, Younggwan, Cho, Seongik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present study, the layout structure of an n-MOSFET, which is vulnerable to radiation, was designed in a different way to enhance its tolerance to radiation. Radiation damage assessment was conducted using modeling and simulation (M&S) techniques before actual semiconductor process fabrication and radiation tests to verify its tolerance properties. Based on the M&S techniques, the role of each layer was determined to improve the radiation tolerance of semiconductors, and the layout design of an n-MOSFET with enhanced radiation tolerance was optimized. The optimized radiation-tolerant n-MOSFET design was implemented in the 0.18-um CMOS bulk process, and radiation exposure tests were conducted on the device. A cumulative radiation dose up to 2 Mrad(Si) was applied to verify its radiation-tolerant performance. Developing new devices using M&S techniques for radiation damage assessment allows reliable estimates of their electrical and radiation-tolerant properties to be obtained in advance of the actual manufacturing process, thereby minimizing development costs and time.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics10080887