DSCBlocks: An Open-Source Platform for Learning Embedded Systems Based on Algorithm Visualizations and Digital Signal Controllers

DSCBlocks is an open-source platform in hardware and software developed in JavaFX, which is focused on learning embedded systems through Digital Signal Controllers (DSCs). These devices are employed in industrial and educational sectors due to their robustness, number of peripherals, processing spee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2019-02, Vol.8 (2), p.228
1. Verfasser: Álvarez Ariza, Jonathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:DSCBlocks is an open-source platform in hardware and software developed in JavaFX, which is focused on learning embedded systems through Digital Signal Controllers (DSCs). These devices are employed in industrial and educational sectors due to their robustness, number of peripherals, processing speed, scalability and versatility. The platform uses graphical blocks designed in Google’s tool Blockly that can be used to build different Algorithm Visualizations (AVs). Afterwards, the algorithms are converted in real-time to C language, according to the specifications of the compiler for the DSCs (XC16) and they can be downloaded in one of the two models of development board for the dsPIC 33FJ128GP804 and dsPIC 33FJ128MC802. The main aim of the platform is to provide a flexible environment, drawing on the educational advantages of the AVs with different aspects concerning the embedded systems, such as declaration of variables and functions, configuration of ports and peripherals, handling of Real-Time Operating System (RTOS), interrupts, among others, that are employed in several fields such as robotics, control, instrumentation, etc. In addition, some experiments that were designed in the platform are presented in the manuscript. The educational methodology and the assessment provided by the students (n = 30) suggest that the platform is suitable and reliable to learn concepts relating to embedded systems.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics8020228