Textile Triboelectric Nanogenerators with Diverse 3D-Spacer Fabrics for Improved Output Voltage
Electrically superior triboelectric nanogenerators (TENG) using 3D fabric and PDMS show great application potential for biokinetic energy harvesting and multifunctional self-power devices. In this study, TENG with fabric-PDMS-fabric structure was produced using various 3D fabrics and PDMS. The peak-...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2021-04, Vol.10 (8), p.937 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electrically superior triboelectric nanogenerators (TENG) using 3D fabric and PDMS show great application potential for biokinetic energy harvesting and multifunctional self-power devices. In this study, TENG with fabric-PDMS-fabric structure was produced using various 3D fabrics and PDMS. The peak-to-peak output voltage of various 3D fabrics was compared. The output voltage changes due to structure and vertical fibers. Also, the coefficient of surface friction between the PDMS and the fabric improves the output voltage. TENG using different 3D-spacer polymeric fabrics showed different maximum peak-to-peak output voltage performance. It is attributed to the stiffness, lateral elasticity and 3D morphology of the fabrics. It is considered that those factors including stiffness, lateral elasticity and 3D morphology influence the densities in vertical and lateral fiber to fiber interaction. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics10080937 |