Mineralized manganese dioxide channel as the stent coating for in situ precise tumor navigation
Drug-eluting stent (DES) is a promising strategy for esophageal cancer. However, full-covered drug-loaded stents cause damage to non-tumor tissue in the esophagus, and the development controlled-release system to prevent non-tumor tissue injure is currently a major challenge. Here, in situ mineraliz...
Gespeichert in:
Veröffentlicht in: | Nano research 2021-07, Vol.14 (7), p.2145-2153 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Drug-eluting stent (DES) is a promising strategy for esophageal cancer. However, full-covered drug-loaded stents cause damage to non-tumor tissue in the esophagus, and the development controlled-release system to prevent non-tumor tissue injure is currently a major challenge. Here,
in situ
mineralized manganese dioxide coating on Ce6 embedded electrospun fibers covered stent was developed for effective tumor therapy via intraluminal photodynamic therapy (PDT), which could reduce phototoxicity to normal esophageal tissue. Oxidation of manganese ions, which was previously swelled between fibers, was used to accomplish mineralization. After implantation, the manganese dioxide coating
in situ
reacts with tumor endogenous H
+
and H
2
O
2
, which, on the one hand, could effectively alleviate the hypoxic microenvironment which leads to resistance to PDT, and on the other hand, could expose the Ce6-fibers below the coating for intraluminal PDT. In addition, due to the slow degradation of the coating, this stent could own sustained photodynamic performance for up to one month. Notably, the PDT efficiency of the stent was investigated on orthotopic rabbit esophageal cancer models. Overall, this work suggests that
in situ
mineralized manganese dioxide coated electrospun fibers covered stent may provide a new strategy for advanced esophageal cancer patients as a functional drug delivery platform. |
---|---|
ISSN: | 1998-0124 1998-0000 |
DOI: | 10.1007/s12274-020-3114-0 |