PotSpot: Participatory sensing based monitoring system for pothole detection using deep learning

Proper maintenance of roads is an extremely complex task and also an important issue all over the world. One of the most critical road monitoring and maintenance activities is the detection of road anomalies such as potholes. Identification of potholes is necessary to avoid road accidents, prevent d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2021-07, Vol.80 (16), p.25171-25195
Hauptverfasser: Patra, Susmita, Middya, Asif Iqbal, Roy, Sarbani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Proper maintenance of roads is an extremely complex task and also an important issue all over the world. One of the most critical road monitoring and maintenance activities is the detection of road anomalies such as potholes. Identification of potholes is necessary to avoid road accidents, prevent damage of vehicles, enhance travelling comforts, etc. Although maintenance of roads is considered to be a serious issue by the authorities over the years, lack of proper detection and mapping of road potholes makes the issue more severe. To overcome this problem, an end-to-end system called PotSpot is built for real-time detection, monitoring, and spatial mapping of potholes across the city A Convolutional Neural Network (CNN) model is proposed and evaluated on real-world dataset for pothole detection. Additionally, real-time pothole-marked maps are generated with the help of Google Maps API (Application Programming Interface). To provide an end-to-end service through this system, both the pothole detection and pothole mapping are integrated through an android application. The proposed model is also compared with six baselines namely Artificial Neural Network (ANN), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and three pre-trained CNN models InceptionV3, VGG19 and VGG16 in terms of performance metrics to verify its effectiveness. The proposed model achieves better accuracy (≈ 97.6 %) as compared to the above-mentioned baseline methods. It is also observed that the Area Under the Curve (AUC) value for the proposed pothole detection model (AUC= 0.97) is higher than the baseline methods.
ISSN:1380-7501
1573-7721
DOI:10.1007/s11042-021-10874-4