Recursive Rewarding Modified Adaptive Cell Decomposition (RR-MACD): A Dynamic Path Planning Algorithm for UAVs

A relevant task in unmanned aerial vehicles (UAV) flight is path planning in 3 D environments. This task must be completed using the least possible computing time. The aim of this article is to combine methodologies to optimise the task in time and offer a complete 3 D trajectory. The flight environ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2019-03, Vol.8 (3), p.306
Hauptverfasser: Samaniego, Franklin, Sanchis, Javier, García-Nieto, Sergio, Simarro, Raúl
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A relevant task in unmanned aerial vehicles (UAV) flight is path planning in 3 D environments. This task must be completed using the least possible computing time. The aim of this article is to combine methodologies to optimise the task in time and offer a complete 3 D trajectory. The flight environment will be considered as a 3 D adaptive discrete mesh, where grids are created with minimal refinement in the search for collision-free spaces. The proposed path planning algorithm for UAV saves computational time and memory resources compared with classical techniques. With the construction of the discrete meshing, a cost response methodology is applied as a discrete deterministic finite automaton (DDFA). A set of optimal partial responses, calculated recursively, indicates the collision-free spaces in the final path for the UAV flight.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics8030306