The Effect of Carbon Ink Rheology on Ink Separation Mechanisms in Screen-Printing

Screen-printable carbon-based inks are available in a range of carbon morphologies and concentrations, resulting in various rheological profiles. There are challenges in obtaining a good print when high loading and elasticity functional inks are used, with a trade-off often required between function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coatings (Basel) 2020-10, Vol.10 (10), p.1008
Hauptverfasser: Potts, Sarah-Jane, Phillips, Chris, Claypole, Tim, Jewell, Eifion
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Screen-printable carbon-based inks are available in a range of carbon morphologies and concentrations, resulting in various rheological profiles. There are challenges in obtaining a good print when high loading and elasticity functional inks are used, with a trade-off often required between functionality and printability. There is a limited understanding of how ink rheology influences the ink deposition mechanism during screen-printing, which then affects the print topography and therefore electrical performance. High speed imaging was used with a screen-printing simulation apparatus to investigate the effect of viscosity of a graphite and carbon-black ink at various levels of solvent dilution on the deposition mechanisms occurring during screen-printing. With little dilution, the greater relative volume of carbon in the ink resulted in a greater tendency towards elastic behavior than at higher dilutions. During the screen-printing process this led to the ink splitting into filaments while remaining in contact with both the mesh and substrate simultaneously over a greater horizonal length. The location of separating filaments corresponded with localized film thickness increases in the print, which led to a higher surface roughness (Sz). This method could be used to make appropriate adjustments to ink rheology to overcome print defects related to poor ink separation.
ISSN:2079-6412
2079-6412
DOI:10.3390/coatings10101008