Effects of Stoichiometry on Structural, Morphological and Nanomechanical Properties of Bi2Se3 Thin Films Deposited on InP(111) Substrates by Pulsed Laser Deposition

In the present study, the structural, morphological, compositional, nanomechanical, and surface wetting properties of Bi2Se3 thin films prepared using a stoichiometric Bi2Se3 target and a Se-rich Bi2Se5 target are investigated. The Bi2Se3 films were grown on InP(111) substrates by using pulsed laser...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coatings (Basel) 2020-10, Vol.10 (10), p.958
Hauptverfasser: Hwang, Yeong-Maw, Pan, Cheng-Tang, Chen, Bo-Syun, Le, Phuoc Huu, Uyen, Ngo Ngoc, Tuyen, Le Thi Cam, Nguyen, Vanthan, Luo, Chih-Wei, Juang, Jenh-Yih, Leu, Jihperng, Jian, Sheng-Rui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present study, the structural, morphological, compositional, nanomechanical, and surface wetting properties of Bi2Se3 thin films prepared using a stoichiometric Bi2Se3 target and a Se-rich Bi2Se5 target are investigated. The Bi2Se3 films were grown on InP(111) substrates by using pulsed laser deposition. X-ray diffraction results revealed that all the as-grown thin films exhibited were highly c-axis-oriented Bi2Se3 phase with slight shift in diffraction angles, presumably due to slight stoichiometry changes. The energy dispersive X-ray spectroscopy analyses indicated that the Se-rich target gives rise to a nearly stoichiometric Bi2Se3 films, while the stoichiometric target only resulted in Se-deficient and Bi-rich films. Atomic force microscopy images showed that the films’ surfaces mainly consist of triangular pyramids with step-and-terrace structures with average roughness, Ra, being ~2.41 nm and ~1.65 nm for films grown with Bi2Se3 and Bi2Se5 targets, respectively. The hardness (Young’s modulus) of the Bi2Se3 thin films grown from the Bi2Se3 and Bi2Se5 targets were 5.4 GPa (110.2 GPa) and 10.3 GPa (186.5 GPa), respectively. The contact angle measurements of water droplets gave the results that the contact angle (surface energy) of the Bi2Se3 films obtained from the Bi2Se3 and Bi2Se5 targets were 80° (21.4 mJ/m2) and 110° (11.9 mJ/m2), respectively.
ISSN:2079-6412
2079-6412
DOI:10.3390/coatings10100958