Elastic piezoelectric aerogels from isotropic and directionally ice-templated cellulose nanocrystals: comparison of structure and energy harvesting

We report the preparation of highly compressible and elastic piezoelectric aerogels of carboxylated cellulose nanocrystals (CNCs). Aqueous CNC dispersions containing polyethyleneimine and crosslinker were frozen isotropically to yield isotropic aerogels, while oriented aerogels were prepared by dire...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellulose (London) 2021-07, Vol.28 (10), p.6323-6337
Hauptverfasser: Ram, Farsa, Biswas, Bipul, Torris, Arun, Kumaraswamy, Guruswamy, Shanmuganathan, Kadhiravan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report the preparation of highly compressible and elastic piezoelectric aerogels of carboxylated cellulose nanocrystals (CNCs). Aqueous CNC dispersions containing polyethyleneimine and crosslinker were frozen isotropically to yield isotropic aerogels, while oriented aerogels were prepared by directional freezing. These aerogels were highly flexible and porous (~ 85% void fraction), exhibiting greater than 90% recovery at 50% compressive strain even after 100 compression–decompression cycles. Since such aerogels with low bulk modulus and high anisotropy would be an ideal platform for leveraging the piezoelectric properties of CNCs, we used them to prepare piezoelectric nanogenerator devices and determined their energy transduction behavior. Anisotropic aerogels led to an enhanced open-circuit voltage of 840 mV (at ~ 8 N applied force), which is over 2.6 times higher than isotropic aerogels (320 mV). The energy density of anisotropic aerogels was around 52 nW/cm 2 , representing outstanding piezoelectric performance for cellulose-based aerogels. Such aerogels with high compressibility, elastic recovery and exceptional piezoelectric performance could have potential applications in sensors, wearable electronics, etc.
ISSN:0969-0239
1572-882X
DOI:10.1007/s10570-021-03896-6