Revisiting the Earth’s atmospheric scattering of X-ray/γ-rays and its effect on space observation: Implication for GRB spectral analysis

A considerable fraction of incident high energy photons from astrophysical transients such as Gamma Ray Bursts (GRBs) is Compton scattered by the Earth’s atmosphere. These photons, sometimes referred to as the “reflection component”, contribute to the signal detected by space-borne X-ray/γ-ray instr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of astrophysics and astronomy 2021-10, Vol.42 (2), Article 69
Hauptverfasser: Palit, Sourav, Anumarlapudi, Akash, Bhalerao, Varun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A considerable fraction of incident high energy photons from astrophysical transients such as Gamma Ray Bursts (GRBs) is Compton scattered by the Earth’s atmosphere. These photons, sometimes referred to as the “reflection component”, contribute to the signal detected by space-borne X-ray/γ-ray instruments. The effectiveness and reliability of source parameters such as position, flux, spectra and polarization, inferred by these instruments are therefore highly dependent on the accurate estimation of this scattered component. Current missions use dedicated response matrices to account for these effects. However, these databases are not readily adaptable for other missions, including many upcoming transient search and gravitational wave high-energy electromagnetic counter part detectors. Furthermore, possible systematic effects in these complex simulations have not been thoroughly examined and verified in literature. We are in the process of investigation of the effect with a detailed Monte Carlo simulations in GEANT4 for a Low Earth Orbit (LEO) X-ray detector. Here, we discuss the outcome of our simulation in form of Atmospheric Response Matrix (ARM) and its implications of any systematic errors in the determination of source spectral characteristics. We intend to apply our results in data processing and analysis for AstroSat-CZTI observation of such sources in near future. Our simulation output and source codes will be made publicly available for use by the large number of upcoming high energy transient missions, as well as for scrutiny and systematic comparisons with other missions.
ISSN:0250-6335
0973-7758
DOI:10.1007/s12036-021-09759-7