Generation Method of Cutting Tool Paths for High-Speed and High-Quality Machining of Free-Form Surfaces
In general, NC programs for machining free-form surfaces using a computer numerical control (CNC) machine tool are generated using a computer-aided manufacturing (CAM) system. The tool paths (CL data) generated by a CAM system are approximated straight-line segments based on tolerance (allowable err...
Gespeichert in:
Veröffentlicht in: | International journal of automation technology 2021-07, Vol.15 (4), p.521-528 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In general, NC programs for machining free-form surfaces using a computer numerical control (CNC) machine tool are generated using a computer-aided manufacturing (CAM) system. The tool paths (CL data) generated by a CAM system are approximated straight-line segments based on tolerance (allowable error). As a result, the tolerance affects the machining accuracy and time. If the tolerance is set to a small value, the lengths of the segments are shortened, and the machining accuracy is improved. The process in which a CNC machine tool reads and analyzes an NC program and controls the motors requires a minimum processing time of an NC program block (block-processing time). Therefore, if the lengths of the approximated straight-line segments are too small, it will be impossible to reach the indicated feed speed, and the machining time will be longer. In this study, by identifying the block-processing time of a CNC controller and deriving the appropriate length of the approximated straight-line segment based on the block-processing time, a CL data creation method that is capable of high-speed and high-accuracy free-form surface machining is proposed. In addition, experimental verification tests of the method are conducted. |
---|---|
ISSN: | 1881-7629 1883-8022 |
DOI: | 10.20965/ijat.2021.p0521 |