End point gradient estimates for quasilinear parabolic equations with variable exponent growth on nonsmooth domains

In this paper, we study quasilinear parabolic equations with the nonlinearity structure modeled after the p ( x ,  t )-Laplacian on nonsmooth domains. The main goal is to obtain end point Calderón-Zygmund type estimates in the variable exponent setting. In a recent work [ 1 ], the estimates obtained...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2021-08, Vol.60 (4), Article 145
Hauptverfasser: Adimurthi, Karthik, Byun, Sun-Sig, Park, Jung-Tae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study quasilinear parabolic equations with the nonlinearity structure modeled after the p ( x ,  t )-Laplacian on nonsmooth domains. The main goal is to obtain end point Calderón-Zygmund type estimates in the variable exponent setting. In a recent work [ 1 ], the estimates obtained were strictly above the natural exponent p ( x ,  t ) and hence there was a gap between the natural energy estimates and the estimates above p ( x ,  t ) (see ( 1.3 ) and ( 1.2 )). Here, we bridge this gap to obtain the end point case of the estimates obtained in [ 1 ]. To this end, we make use of the parabolic Lipschitz truncation developed in [ 2 ] and obtain significantly improved a priori estimates below the natural exponent with stability of the constants. An important feature of the techniques used here is that we make use of the unified intrinsic scaling introduced in [ 3 ], which enables us to handle both the singular and degenerate cases simultaneously.
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-021-01982-y