Abstractive Review Summarization based on Improved Attention Mechanism with Pointer Generator Network Model

Nowadays online reviews play an important role by giving an helping hand to the customers to know about other customer’s opinions about the product they are going to purchase. This also guides the organizations as well as government sectors to increase their quality of product and services. So autom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Webology 2021, Vol.18 (1), p.77-91
Hauptverfasser: Shobana, J., Murali, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nowadays online reviews play an important role by giving an helping hand to the customers to know about other customer’s opinions about the product they are going to purchase. This also guides the organizations as well as government sectors to increase their quality of product and services. So automatic review summarization becomes more important rather than summarizing it manually as it saves time. The aim of this work is to produce a comprehensive summary which includes all key content from the source text. The Proposed Automatic Review Summarization model with improved attention mechanism increases the semantic knowledge and thus improves the summary’s eminence. This encoder-decoder model aims to generate summary in an abstractive way. The Pointer generator mechanism solves the problem of rare words which are out-of-vocabulary and the repetition issues are overcome by coverage mechanism. Experiments were conducted on Amazon’s mobile reviews dataset reveals that the proposed methodology generated more accurate abstractive review summarization when compared with existing techniques. The performance of the summary report is measured using the evaluation metric ROUGE.
ISSN:1735-188X
1735-188X
DOI:10.14704/WEB/V18I1/WEB18028