Activity Patterns of Anadromous Fish below a Tide Gate: Observations from High‐Resolution Imaging Sonar

The construction of dams and tide gates on waterways has altered the physical structure of many coastal, estuarine, and freshwater systems. These changes have come at a cost to fish populations, most notably diadromous species, which rely on connectivity between marine and freshwater systems. These...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine and Coastal Fisheries 2021-06, Vol.13 (3), p.200-212
Hauptverfasser: Rillahan, Christopher B., Alcott, Derrick, Castro‐Santos, Theodore, He, Pingguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The construction of dams and tide gates on waterways has altered the physical structure of many coastal, estuarine, and freshwater systems. These changes have come at a cost to fish populations, most notably diadromous species, which rely on connectivity between marine and freshwater systems. These anthropogenic structures can have direct effects on migrating fish, such as blocking fish passage, or have more subtle effects, such as changing movement patterns. This study used a high‐resolution Adaptive Resolution Imaging Sonar to examine the behavior of Striped Bass Morone saxatilis, a large coastal predator, and Alewife Alosa pseudoharengus and Blueback Herring Alosa aestivalis (collectively known as river herring), which are forage fish, below a tide gate structure on the Herring River in Wellfleet, Massachusetts, during the river herring spring spawning run. Striped Bass were persistently present downstream of the tide gate and exhibited strong diurnal and tidal patterns. Activity of Striped Bass was highest at night and during ebb tides. During peak outflow periods, river herring were observed milling downstream of the dam in a scour pool, indicating delayed upstream passage. River herring upstream migration was primarily associated with daytime and during incoming tides. Downstream‐migrating river herring were primarily observed during nighttime hours. While it was documented that the tide gates provided a physical impediment to migration, their effect on predator behavior could pose an additional challenge to migrating river herring, further complicating their recovery efforts. Due to the prevalence of obstructed waterways, studying the behavior of fish around anthropogenic structures is important in understanding the full range of impacts that these systems have under varying ecological conditions and on ecological relationships.
ISSN:1942-5120
1942-5120
DOI:10.1002/mcf2.10149