Precision length determination and in silico simulation in PCR of microsatellite repeat sequences

Despite being commonplace, polymerase chain reactions (PCRs) still contain many unknown aspects. One example is microsatellite PCR, which is now widely used for various purposes from ecology to cancer medicine. Since this category of repetitive DNA sequences induces polymerase slippage not only in v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrophoresis 2021-07, Vol.42 (12-13), p.1323-1332
Hauptverfasser: Shioi, Seijiro, Shimamoto, Akiyoshi, Nakagami, Yuki, Qin, Lexin, Shimokawa, Mototsugu, Oda, Shinya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite being commonplace, polymerase chain reactions (PCRs) still contain many unknown aspects. One example is microsatellite PCR, which is now widely used for various purposes from ecology to cancer medicine. Since this category of repetitive DNA sequences induces polymerase slippage not only in vivo but also in vitro, microsatellite PCR products comprise a complex combination of DNA fragments with various lengths and have, therefore, been empirically interpreted. The primary obstacle for understanding microsatellite PCR was the intrinsic inaccuracy in sizing of DNA fragments in capillary electrophoresis (CE), which, however, has been overcome by elucidating intrinsic sizing errors in each fragment length range. Secondly, the slippage properties of the thermostable polymerases were first clarified in detail using primer extension assays. Furthermore, using the obtained slippage parameters and our original program, we have first reconstructed microsatellite PCR in silico. The entire processes of complex microsatellite PCR have, thus, been more clearly understood.
ISSN:0173-0835
1522-2683
DOI:10.1002/elps.202100021