Energy and Randic index of directed graphs

The concept of Randic index has been extended recently for a digraph. We prove that \(2R(G)\leq \mathcal{E}(G)\leq 2\sqrt{\Delta(G)} R(G)\), where \(G\) is a digraph, and \(R(G)\) denotes the Randic index, \(\mathcal{E}(G)\) denotes the Nikiforov energy and \(\Delta(G) \) denotes the maximum degree...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-06
Hauptverfasser: Arizmendi, Gerardo, Arizmendi, Octavio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Arizmendi, Gerardo
Arizmendi, Octavio
description The concept of Randic index has been extended recently for a digraph. We prove that \(2R(G)\leq \mathcal{E}(G)\leq 2\sqrt{\Delta(G)} R(G)\), where \(G\) is a digraph, and \(R(G)\) denotes the Randic index, \(\mathcal{E}(G)\) denotes the Nikiforov energy and \(\Delta(G) \) denotes the maximum degree of \(G\). In both inequalities we describe the graphs for which the equality holds.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2547178511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2547178511</sourcerecordid><originalsourceid>FETCH-proquest_journals_25471785113</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcs1LLUqvVEjMS1EIAhKZyQqZeSmpFQr5aQopmUWpySWpKQrpRYkFGcU8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGpibmhuYWpoaEycKgDcUTBl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547178511</pqid></control><display><type>article</type><title>Energy and Randic index of directed graphs</title><source>Free E- Journals</source><creator>Arizmendi, Gerardo ; Arizmendi, Octavio</creator><creatorcontrib>Arizmendi, Gerardo ; Arizmendi, Octavio</creatorcontrib><description>The concept of Randic index has been extended recently for a digraph. We prove that \(2R(G)\leq \mathcal{E}(G)\leq 2\sqrt{\Delta(G)} R(G)\), where \(G\) is a digraph, and \(R(G)\) denotes the Randic index, \(\mathcal{E}(G)\) denotes the Nikiforov energy and \(\Delta(G) \) denotes the maximum degree of \(G\). In both inequalities we describe the graphs for which the equality holds.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Graph theory ; Graphs</subject><ispartof>arXiv.org, 2021-06</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Arizmendi, Gerardo</creatorcontrib><creatorcontrib>Arizmendi, Octavio</creatorcontrib><title>Energy and Randic index of directed graphs</title><title>arXiv.org</title><description>The concept of Randic index has been extended recently for a digraph. We prove that \(2R(G)\leq \mathcal{E}(G)\leq 2\sqrt{\Delta(G)} R(G)\), where \(G\) is a digraph, and \(R(G)\) denotes the Randic index, \(\mathcal{E}(G)\) denotes the Nikiforov energy and \(\Delta(G) \) denotes the maximum degree of \(G\). In both inequalities we describe the graphs for which the equality holds.</description><subject>Graph theory</subject><subject>Graphs</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcs1LLUqvVEjMS1EIAhKZyQqZeSmpFQr5aQopmUWpySWpKQrpRYkFGcU8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGpibmhuYWpoaEycKgDcUTBl</recordid><startdate>20210630</startdate><enddate>20210630</enddate><creator>Arizmendi, Gerardo</creator><creator>Arizmendi, Octavio</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210630</creationdate><title>Energy and Randic index of directed graphs</title><author>Arizmendi, Gerardo ; Arizmendi, Octavio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25471785113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Graph theory</topic><topic>Graphs</topic><toplevel>online_resources</toplevel><creatorcontrib>Arizmendi, Gerardo</creatorcontrib><creatorcontrib>Arizmendi, Octavio</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arizmendi, Gerardo</au><au>Arizmendi, Octavio</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Energy and Randic index of directed graphs</atitle><jtitle>arXiv.org</jtitle><date>2021-06-30</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>The concept of Randic index has been extended recently for a digraph. We prove that \(2R(G)\leq \mathcal{E}(G)\leq 2\sqrt{\Delta(G)} R(G)\), where \(G\) is a digraph, and \(R(G)\) denotes the Randic index, \(\mathcal{E}(G)\) denotes the Nikiforov energy and \(\Delta(G) \) denotes the maximum degree of \(G\). In both inequalities we describe the graphs for which the equality holds.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2547178511
source Free E- Journals
subjects Graph theory
Graphs
title Energy and Randic index of directed graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A59%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Energy%20and%20Randic%20index%20of%20directed%20graphs&rft.jtitle=arXiv.org&rft.au=Arizmendi,%20Gerardo&rft.date=2021-06-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2547178511%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547178511&rft_id=info:pmid/&rfr_iscdi=true