Energy and Randic index of directed graphs

The concept of Randic index has been extended recently for a digraph. We prove that \(2R(G)\leq \mathcal{E}(G)\leq 2\sqrt{\Delta(G)} R(G)\), where \(G\) is a digraph, and \(R(G)\) denotes the Randic index, \(\mathcal{E}(G)\) denotes the Nikiforov energy and \(\Delta(G) \) denotes the maximum degree...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-06
Hauptverfasser: Arizmendi, Gerardo, Arizmendi, Octavio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The concept of Randic index has been extended recently for a digraph. We prove that \(2R(G)\leq \mathcal{E}(G)\leq 2\sqrt{\Delta(G)} R(G)\), where \(G\) is a digraph, and \(R(G)\) denotes the Randic index, \(\mathcal{E}(G)\) denotes the Nikiforov energy and \(\Delta(G) \) denotes the maximum degree of \(G\). In both inequalities we describe the graphs for which the equality holds.
ISSN:2331-8422