Energy and Randic index of directed graphs
The concept of Randic index has been extended recently for a digraph. We prove that \(2R(G)\leq \mathcal{E}(G)\leq 2\sqrt{\Delta(G)} R(G)\), where \(G\) is a digraph, and \(R(G)\) denotes the Randic index, \(\mathcal{E}(G)\) denotes the Nikiforov energy and \(\Delta(G) \) denotes the maximum degree...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-06 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The concept of Randic index has been extended recently for a digraph. We prove that \(2R(G)\leq \mathcal{E}(G)\leq 2\sqrt{\Delta(G)} R(G)\), where \(G\) is a digraph, and \(R(G)\) denotes the Randic index, \(\mathcal{E}(G)\) denotes the Nikiforov energy and \(\Delta(G) \) denotes the maximum degree of \(G\). In both inequalities we describe the graphs for which the equality holds. |
---|---|
ISSN: | 2331-8422 |