Mining Software Repository for Cleaning Bugs Using Data Mining Technique

Despite advances in technological complexity and efforts, software repository maintenance requires reusing the data to reduce the effort and complexity. However, increasing ambiguity, irrelevance, and bugs while extracting similar data during software development generate a large amount of data from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers, materials & continua materials & continua, 2021-01, Vol.69 (1), p.873-893
Hauptverfasser: Mahmood, Nasir, Hafeez, Yaser, Iqbal, Khalid, Hussain, Shariq, Aqib, Muhammad, Jamal, Muhammad, Song, Oh-Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite advances in technological complexity and efforts, software repository maintenance requires reusing the data to reduce the effort and complexity. However, increasing ambiguity, irrelevance, and bugs while extracting similar data during software development generate a large amount of data from those data that reside in repositories. Thus, there is a need for a repository mining technique for relevant and bug-free data prediction. This paper proposes a fault prediction approach using a data-mining technique to find good predictors for high-quality software. To predict errors in mining data, the Apriori algorithm was used to discover association rules by fixing confidence at more than 40% and support at least 30%. The pruning strategy was adopted based on evaluation measures. Next, the rules were extracted from three projects of different domains; the extracted rules were then combined to obtain the most popular rules based on the evaluation measure values. To evaluate the proposed approach, we conducted an experimental study to compare the proposed rules with existing ones using four different industrial projects. The evaluation showed that the results of our proposal are promising. Practitioners and developers can utilize these rules for defect prediction during early software development.
ISSN:1546-2218
1546-2226
1546-2226
DOI:10.32604/cmc.2021.016614