Synthesis, characterization, crystal structures, and the biological evaluation of 2-phenylthiazole derivatives as cholinesterase inhibitors
Four 2-phenylthiazole derivatives are synthesized, characterized, and evaluated as cholinesterase inhibitors. The structures of the 2-phenylthiazole derivatives are confirmed by 1H and 13C nuclear magnetic resonance spectroscopy, single-crystal X-ray diffraction studies, and Hirshfeld surfaces analy...
Gespeichert in:
Veröffentlicht in: | Journal of chemical research 2021-05, Vol.45 (5-6), p.572-581 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Four 2-phenylthiazole derivatives are synthesized, characterized, and evaluated as cholinesterase inhibitors. The structures of the 2-phenylthiazole derivatives are confirmed by 1H and 13C nuclear magnetic resonance spectroscopy, single-crystal X-ray diffraction studies, and Hirshfeld surfaces analysis. Hirshfeld surface analysis of the prepared compounds showed C–H···O intermolecular interactions. The cholinesterase inhibition activities of the synthesized compounds are tested by Ellman’s method. [2-(4-Benzyloxyphenyl)-thiazol-4-yl]-(3,5-dimethylpiperidin-1-yl)-methanone showed the best acetylcholinesterase inhibition activity with an IC50 value of 8.86 µM and the best butyrylcholinesterase inhibition activity with an IC50 value of 1.03 µM. A docking study demonstrates that the same compound interacts with the catalytic anionic site and peripheral anionic site of acetylcholinesterase and the catalytic anionic site of butyrylcholinesterase. |
---|---|
ISSN: | 1747-5198 2047-6507 |
DOI: | 10.1177/1747519820976543 |